
Enabling Coverage-Based Verification in Chisel
Andrew Dobis, Hans Jakob Damsgaard, Enrico Tolotto,

Kasper Hesse, Tjark Petersen, Martin Schoeberl

Department of Applied Mathematics and Computer Science
Technical University of Denmark

Lyngby, Denmark

andrew.dobis@inf.ethz.ch, hans.damsgaard@tuni.fi, {s190057, s183735, s186083}@student.dtu.dk, masca@dtu.dk

Abstract—Ever-increasing performance demands are pushing
hardware designers towards designing domain-specific acceler-
ators. This has created a demand for improving the overall
efficiency of the hardware design and verification cycles. The
design efficiency was improved with the introduction of Chisel.
However, verification efficiency has yet to be tackled. One method
that can increase verification efficiency is the use of various
types of coverage measures. In this paper, we present our open-
source, coverage-related verification tools targeting digital designs
described in Chisel. Specifically, we have created a new method
allowing for statement coverage at an intermediate representation
of Chisel, and several methods for gathering functional coverage
directly on a Chisel description.

Index Terms—Hardware Verification, Statement Coverage,
Functional Coverage, Chisel, Scala.

I. INTRODUCTION

As time passes, contemporary hardware design is met with
tighter development and verification time-constraints. Addi-
tionally, hardware designers are turning to domain-specific
accelerators in order to keep up with the ever-increasing
performance demands [1]. This means that more and more
hardware must be designed from scratch in ever shortening
time periods [2]. To help meet these demands, researchers at
the University of California in Berkeley proposed Chisel [3],
a Scala embedded high-level hardware construction language.

This solution is powerful, but is lacking verification func-
tionalities. One of the main tools needed for the verification
of digital systems is coverage. Coverage allows verification
engineers to measure their progress throughout the testing pro-
cess and have an idea of how effective their tests actually are.
Coverage can be separated into multiple distinct categories, but
we will focus on the following two: statement and functional
coverage. Statement coverage defines a measure for “how
many code statements have been tested?”, whereas functional
coverage gives a measure for “which functionalities have been
tested?” [4].

In this paper, we explore how to use existing tools, both for
Scala and for Verilog, in order to obtain statement coverage in
Chisel. We will start by presenting code coverage at the Scala
level. Second, we will briefly discuss how to use Verilator [5]
in order to enable statement coverage of the generated Verilog
description. Third, we will show our solution for getting

statement coverage of the so-called Flexible Internal Repre-
sentation of Register Transfer Level (FIRRTL) intermediate
representation [6]. In total, these measures represent test
coverage of different language levels of a Chisel design.

Next, will present our solution for gathering functional
coverage of a Chisel design directly in Scala. And finally,
we evaluate our coverage solutions with example use cases
to illustrate its efficiency. The solutions are shown to reduce
the amount of code (measured in lines of code) needed to
gather functional coverage on a Chisel design in comparison to
using SystemVerilog (SV) extended by Universal Verification
Methodology (UVM) [7].

The contributions of this paper are a method for extending
FIRRTL execution engines for gathering statement coverage,
as well as novel tools and methods for defining and gathering
functional coverage in a high-level hardware construction
language such as Chisel.

The paper is organized as follows. The following section
presents related work. Section III presents background on
Chisel and various coverage methodologies. Section IV dis-
cusses how existing tools can be used to gather statement
coverage of a Chisel design. Section V presents our work on
adding statement coverage at the FIRRTL level. Section VI
then presents our Scala-based functional coverage framework.
In section VII, we evaluate our solution by comparing to
similar tests written in SV with UVM. Section VIII concludes.

II. RELATED WORK

SV, a mostly non-synthesizable extension of the Verilog
Hardware Description Language (HDL), contains certain con-
structs capable of gathering coverage information [4]. These
can be used when working with the Verilog description gener-
ated by Chisel. Specifically, Chisel 3.4.0’s experimental cover
statement maps directly to its SV equivalent [8], but is yet
to be supported by FIRRTL execution engines like Treadle1.
Our solution differs from this approach, since we use pre-
existing language features from Chisel/Scala in order to enable
coverage in the simplest possible manner. Additionally, our
functional coverage solution allows for greater customizability
in terms of the behavior captured by the different cover

1Available at https://github.com/chipsalliance/treadle

2022 27th IEEE European Test Symposium (ETS)

978-1-6654-6706-3/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 E
ur

op
ea

n
Te

st
 S

ym
po

si
um

 (E
TS

) |
 9

78
-1

-6
65

4-
67

06
-3

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

ET
S5

42
62

.2
02

2.
98

10
43

5

Authorized licensed use limited to: Princeton University. Downloaded on May 09,2024 at 23:51:48 UTC from IEEE Xplore. Restrictions apply.

constructs, while Chisel’s cover statement is limited by a
simple predicate evaluated on sampling.

A possible solution to obtaining statement coverage for
Chisel, is to rely on the generated Verilog code. As part of the
Chisel development tools, ChiselTest allows a Chisel design
to be simulated with the open-source Verilator [5] back-end
by using the generated Verilog description. Some coverage
metrics can be enabled using a few simulation parameters in
Verilator [9]. The simulator then generates a coverage report
in a SystemPerl coverage report file [10].

SV is widely used in the scope of UVM [7]. In UVM,
verification engineers can define verification plans using
Bins describing ranges of values to test for, CoverPoints
defining which ports to sample, and CoverGroups com-
prising CoverPoints that are to be sampled simultane-
ously. UVM also supports cross coverage, a special kind of
CoverPoint where a hit is only considered when two or
more CoverPoints have specific values at the same time.
Coverage is sampled whenever the sample method is called
on a CoverGroup. In contrast to this, our solution offers tools
which allow for a more customizable verification plan, en-
abling a definition that closely models the target specification.

In relation to timed coverage, Property Specification
Language (PSL) and the similar SystemVerilog Assertions
(SVA) [11] are two current solutions allowing for the use of
temporal logic in relation to both coverage and assertions. PSL
for example offers a wide variety of Sequential-Extended Reg-
ular Expressions (SEREs), which define temporal relations,
taken from Linear-Temporal Logic (LTL), between different
boolean expressions. This language also has extensions adding
other functionalities from LTL, such as the past [12] operator.
These solutions are both quite complex and require the use
of many operators to describe potentially simple temporal
relations. Rather than relying solely on temporal operators
to express a form of LTL, our solution aims to provide a
simplified set of temporal constructs that encompass a similar
range of relations when used in conjunction with different
types of bins.

We defend the idea of creating verification methods in Scala
(in open-source), rather than relying on an external language,
since it improves the overall cohesion of the Chisel/Scala
ecosystem. Following that same idea, we briefly mention the
work conducted in parallel to the research presented in this
paper on constructing a hardware verification library for Chisel
entirely in Scala, namely ChiselVerify [13].

III. BACKGROUND

We begin by presenting a brief overview of Chisel and
FIRRTL. After that, we will give an introduction to statement
and functional coverage.

A. Chisel

Chisel is a hardware construction language embedded in
the functional and object-oriented programming language
Scala [3], [14], [15]. A Chisel design generates a Verilog
description that can then be synthesized using existing tooling.
Chisel syntax is rooted in Scala. As a result, it enables the

description of hardware in a high-level manner. Scala also
allows for both functional and object-oriented programming
constructs, which makes it possible to organize a design very
intuitively using Scala classes and objects, and to use the
power of functions as first-order objects to simplify descrip-
tions thanks to constructs like mappings or reductions.

B. FIRRTL

In a Chisel design, the source code is first compiled into
an intermediate representation named FIRRTL [6]. FIRRTL is
used as a sort of “optimization layer” before being converted
into the final Verilog form. During this optimization process
the original Chisel description goes through three different
intermediate representation layers:

• High-FIRRTL, which is a form that maps perfectly back
to Chisel, but with the FIRRTL structure.

• Mid-FIRRTL, which is a form where abstract constructs
are simplified, i.e., loops are unrolled and arrays are
flattened.

• Low-FIRRTL, which maps to RTL code with high-level
conditional statements turned into multiplexers.

Throughout this optimization process, custom FIRRTL com-
piler passes, known as Transforms, can be used to modify the
design. This is often done when trying to apply simplifications
to the design to make the generated hardware more optimal [6].

Figure 1 shows an overview of the Chisel compilation
pipeline and how our coverage methods incorporate into it.
More specifically, it shows the different steps taken before
the coverage FIRRTL pass can be run, and shows where the
functional coverage tools fit in. For the sake of clarity, the
synthesis part of the pipeline has been omitted.

C. Test Coverage

In software development, test coverage is used as a metric
to measure the completeness of a testing suite. In recent
years, these techniques, originally used for software, have been
brought into the hardware verification universe. In this paper,
we will mostly focus on two key approaches to test coverage:
statement coverage and functional coverage.

a) Statement Coverage: Statement coverage measures
which percentage of statements in our code has been executed
during the test. It is widely used in the software world and may
be ported directly to the hardware world. However, despite
being simple to use, statement coverage alone does not suffice
as it only provides information about which code statements
were tested, but not how well they were tested [16].

b) Functional Coverage: If we instead are looking to
measure the completeness of a test suite, we need to ask the
following question: “are we even testing the right thing?”.
In the hardware world, engineers usually implement designs
based on pre-determined specifications, so when testing, we
should also have a metric for how well we are implementing
the specification. Functional coverage is that metric. The
idea is to first define what is called a verification plan [4],
which represents the specification we are implementing. A
good verification plan tests only the required functionality of

Authorized licensed use limited to: Princeton University. Downloaded on May 09,2024 at 23:51:48 UTC from IEEE Xplore. Restrictions apply.

Chisel / Scala
Transform

High FIRRTL

Transform

Mid FIRRTL Low FIRRTL

FIRRTL Compiler

Simulate modified LoFIRRTL
Treadle

VCDTest Results

ChiselTestChiselVerify

Get LoFIRRTL

Coverage FIRRTL passCoverage Report

Coverage Report

Fig. 1. Overview of the Chisel pipeline. Chisel code is first given to the FIRRTL compiler, where it is transformed by a series of “lowering passes”. It is then
output by the compiler in a low-level form, where only hardware primitives are used without loops. Our Functional Coverage library works as an intermediate
between the Chisel source and ChiselTest. The optional custom FIRRTL pass, modifies the loFIRRTL code being fed into Treadle.

a device under test (DUT) by applying only realistic input
patterns to it. Once a plan is defined, we sample the different
points defined in the specification during the testing process
to obtain results in the form of: “test suite T covered a total
of x% of the values specified by point P in specification A”.

D. What to Aim For

When verifying a design, the greatest pitfall is the idea of
needing to achieve 100 % statement coverage. Indeed, reaching
100 % statement coverage is often either unreasonable due to
computational requirements or impossible due to statements
not meant to be executed. One should rather aim for fully
exercising the most important features of one’s design; thus,
targeting high functional coverage. Statement coverage can
still be useful, however, as it indicates whether or not sections
of code are executed.

Additionally, it is crucial to remember that coverage metrics
only indicate the thoroughness of a verification suite, and not
its correctness or completeness. Designing a good verification
plan is therefore of the utmost importance [16].

E. Coverage in Chisel

The most common way to test a design implemented in
Chisel is by using ChiselTest [17]. It is a testing framework
for Chisel that gives access to a simple peek, poke and
expect testing interface. ChiselTest also helps the user
create golden models, to test their design against, entirely
in Scala or by using the Java Native Interface (JNI) with
already defined models written in, e.g., C. This is further
supported by a simple fork functionality for concurrency. This
framework, however, is lacking in verification functionalities
and does not give the user any way to gather coverage on a
Chisel design. Hence, if one wants to gather test coverage on a
current Chisel design, they need to rely on basic Scala software
coverage tools (which we explore in more detail in the next
section). We are, therefore, introducing coverage solutions that
are specifically tailored for Chisel.

IV. APPLYING AN EXISTING TOOL

We will start with measuring coverage at a high level (i.e.,
coverage of the Scala/Chisel code itself). Scala and its cor-
responding software testing framework ScalaTest have some
coverage functionalities built-in, specifically, we apply the

Scoverage plugin [18]. Scoverage supports statement coverage
and should work with Chisel [19].

To enable coverage, the Scoverage plugin must be added to
the Scala project, including optional arguments, defined in the
plugins.sbt file. Subsequently running the test and coverage
reporter tool will create a graphical coverage report in a set
of HTML files. The report may optionally include the original
source files with statements that were executed during the test
marked in green.

While this sounds promising, experimenting with Scover-
age in combination with Chisel revealed some limitations.
In particular, some of the basic constructs introduced by
Chisel, e.g. switch statements, are simply not considered by
the coverage tool and thus, incomplete results are reported.
In practice, this makes Scoverage insufficient for hardware
verification. However, it does provide coverage results for
the hardware generators, which can also be important to
consider for verification or optimization purposes by pointing
the designer’s attention toward unused generator code.

V. STATEMENT COVERAGE AT THE FIRRTL LEVEL

Statement coverage at the FIRRTL level is interesting for
two reasons: first, FIRRTL is intuitively mapped back to the
Chisel code, and second, it contains only expanded hardware
code meaning that we obtain coverage information on the
generated hardware rather than the hardware generators.

To enable it, we developed a method allowing for coverage
measurements in Treadle, a FIRRTL execution engine used to
simulate Chisel designs with the ChiselTest framework. We
do so by running tests through an extended version of Treadle
(available as a SNAPSHOT at the time of writing).

We base this on Baxter’s method for collecting statement
coverage in arbitrary languages [20], which we adapt for
HDLs. The idea is to extend each multiplexer of a design with
additional outputs, known as coverage validators, which are
set depending on the paths taken by each multiplexer using
coverage expressions. During testing, the ports are sampled
and used for checking whether a certain multiplexer path was
taken. This results in a particular branch coverage percentage
which can be mapped to a statement coverage percentage.

We implement this by simply extending each multiplexer in
the expanded FIRRTL code by adding the required extra ports.
As such, our implementation is based on a custom pass of the
FIRRTL compiler that traverses the source’s abstract syntax
tree and adds the additional outputs and coverage expressions

Authorized licensed use limited to: Princeton University. Downloaded on May 09,2024 at 23:51:48 UTC from IEEE Xplore. Restrictions apply.

as needed. During a test, the outputs are sampled on each call
to the expect method. Finally, the results are compiled to a
Scala case class containing the multiplexer path coverage
percentage, the coverage validator lines that were covered by
a test, and the modified LoFIRRTL code as a List[String].
The case class may be serialized into a coverage report. The
report contains annotated LoFIRRTL code lines marked by
“+” if they have been executed at least once during the tests
and “-” otherwise. A component’s input/output ports are, by
default, considered executed. Hence, “-” can only appear on
lines containing a coverage validator as it represents a non-
explored multiplexer path. Consider for example the following
report of a simple circuit in which only the path for which
io a is 1 has been tested:

COVERAGE: 50.0% of multiplexer paths tested

COVERAGE REPORT:

+ circuit Test_1 :

+ module Test_1 :

+ input io_a : UInt<1>

+ input io_b_0 : UInt<2>

+ input io_b_1 : UInt<2>

+ input clock : Clock

+ output io_cov_valid_0 : UInt<1>

+ output io_cov_valid_1 : UInt<1>

+ output out : UInt<2>

+ io_cov_valid_0 <= io_a

- io_cov_valid_1 <= not(io_a)

+ out <= mux(io_a, io_b_0, io_b_1)

We see that a single coverage validator line isn’t covered.
Thus, our simple test did not cover the path where out took
the value io b 1.

VI. FUNCTIONAL COVERAGE IN CHISEL

As described previously, statement coverage is not sufficient
for verifying complex hardware. As such, a tool for hardware
verification would not be complete without constructs allowing
one to define a verification plan and retrieve a functional
coverage report from it.

A verification plan describes which ports should be sam-
pled and kept track of in the coverage report. In SV and
UVM, verification plans are based on three elements: Bins,
CoverPoints and CoverGroups. We take a similar approach
but extend upon their functionality. As such, we need to be
able to define a verification plan, sample DUT ports, keep track
of the number of hits in each bin, and compile the results into
a comprehensible report.

We implemented this on top of the existing
ChiselTest [17] framework with a top-level
CoverageReporter class whose register method is
used to define verification plans. Internally, the coverage
reporter stores CoverPoint to Bin mappings inside a
CoverageDB. Once defined, the sample method (based
on ChiselTest’s peek method) is used to update bins.
After a test, a coverage report can be generated using the
printReport method. Our solution extends existing tools
with special coverage constructs that allow the user to define
relations between ports.

Exactly

Eventually

Always

Never

Fig. 2. Illustration of the four delay types supported by our coverage tools.

A. Cross Coverage

Basic coverage relations between multiple ports can be
defined using a CrossPoint. This allows one to associate a set
of ports to a set of ranges of equal size. A sample of the ports
is considered a hit if all of the port values are contained in
their associated ranges. This is particularly useful for checking
whether all interesting combinations of values on a set of ports
were tested [16]. An example being the injection of valid and
corrupt packets on all ports of a NoC router.

B. Timed Coverage

Timed coverage relations in our solution aim to provide
a simple and accessible form of temporal logic related to
functional coverage. Adding a temporal argument to our
cover construct allows us to define relations between ports
sampled in different cycles. The user specifies the expected
delay and temporal construct to use. For this, we provide the
following four basic operators, which we call delay types:

• Exactly, a hit will only be considered if the second point
is sampled in its range at exactly the given number of
cycles after the first point was.

• Eventually, a hit will be considered if the second point
is sampled in its range at any point within the given
number of cycles after the first point was.

• Always, a hit will be considered if the second point
is sampled in its range during every cycle for a given
number of cycles after the first point was.

• Never, a hit will be considered if the second point is
never sampled within its range during every cycle for a
given number of cycles after the first point was.

The delay types are illustrated in Figure 2. Green dots indicate
when the second point must be sampled in its range for it to
be considered a hit.

We find that using these four simple operators applied on
different bins, one can express complex timing relations. For
example, an event happening at some point between 5 and 10
cycles after a given point can be expressed using a conditional
bin with a Never(5) delay, combined with a second bin using
the same condition and a Eventually(10) delay.

C. Conditional Coverage

Working in Scala allows us to use functions as higher-
order objects. We exploit this and provide a CoverCondition
construct which may be used to gather coverage information
on an arbitrary number of ports with a user-defined predicate.

Authorized licensed use limited to: Princeton University. Downloaded on May 09,2024 at 23:51:48 UTC from IEEE Xplore. Restrictions apply.

A sample is considered a hit if the predicate evaluates to
true. Since we are working with an arbitrary number of ports,
computing the set of possible value combinations in order to
obtain a coverage percentage is computationally expensive. To
alleviate said problem, we added an optional expectedHits
parameter that lets the user define a number of expected hits to
generate a coverage percentage. If passed, the coverage report
will include a hit percentage for the particular CoverPoint.
This coverage information can be very useful when wanting
to create points that cover sparse ranges. We also provide this
predication functionality for regular bins to support non-trivial
ranges, e.g., covering only odd numbers in the range [0,100)
with condition { case Seq(x) => x % 2 != 0 }.

D. Example Verification Plan and Coverage Report
Using the aforementioned elements, users can define ac-

curate representations of their specifications in the form of
verification plans. The following listing shows an example
verification plan utilizing some of the tools to verify a DUT
denoted dut:

1 val cr = new CoverageReporter(dut)
2 cr.register(
3 cover("accu", dut.io.accu)(
4 bin("lo10", 0 until 10),
5 bin("First100odd", 0 until 100,
6 { case Seq(x) => x % 2 != 0 }))),
7 cover("aAndB", dut.io.outA, dut.io.outB)(
8 bin("asuptobAtLeast100",
9 condition = { case Seq(a, b) => a > b },

10 expectedHits = 100),),
11 cover("accuAndTest", dut.io.accu, dut.io.test)(
12 cross("both1", Seq(1 to 1, 1 to 1))),
13 cover("timedAB", dut.io.outA,

dut.io.count)(Exactly(3))(
14 cross("ExactlyBoth3", Seq(3 to 3, 3 to 3))))

During the subsequent tests, we must call cr.sample()
whenever we wish to sample the defined CoverPoints. Once
our tests are done, we can ask for a coverage report by calling
cr.printReport(), which results in the following:

============== COVERAGE REPORT ==============

COVER_POINT PORT NAME: accu

BIN lo10 COVERING 0 until 10 HAS 8 HIT(S) = 80%

BIN First100odd COVERING 0 until 100

WITH CONDITION onlyOdd HAS 1 HIT(S) = 1,00%

==

COVER_CONDITION NAME: aAndB

CONDITION asuptobAtLeast100 HAS 5 HITS

EXPECTED 100 = 5.0%

==

CROSS_POINT accuAndTest FOR POINTS accu AND test

BIN both1 COVERING 1 to 1 CROSS 1 to 1

HAS 1 HIT(S) = 100%

==

CROSS_POINT timedAB WITH AN EXACT DELAY OF 3

BIN ExactlyBoth3 COVERING 3 to 3 CROSS 3 to 3

HAS 1 HIT(S) = 100,00%

==

The above report shows each point with its user-defined name
and the bins it contains. These are associated to a number of

hits and, whenever possible (as described in section VI-C), a
coverage percentage. Another option would be, for example if
we want to do automated constraint modifications depending
on coverage results, to generate the coverage report as a Scala
case class and then to use its binNcases method to get
numerical and reusable coverage results.

VII. EVALUATION

To evaluate our new coverage tools, that we include in our
ChiselVerify package, we will verify both an ALU accumu-
lator from the Leros processor [21] and an arbiter circuit, both
implemented using Chisel. Note that we will only focus on the
proposed functional coverage tools, since statement coverage
was added directly into Treadle and requires additional work
from the verification engineer. This will be done by comparing
the verbosity of our Scala-based coverage solutions to that
of the same verification done with UVM. The verbosity is
measured in “verification lines per source lines of code”, a
metric used in other works to partially evaluate verification
languages [22], [23]. We consider a verification line to be any
explicit declaration of a cover or bin construct, as well as any
function call or standard statement, and have formatted our
listings accordingly. In order to verify our DUT with UVM,
we work with the verilog description generated by Chisel,
since our goal is to enable verification of Chisel designs, in
order to have it be compatible with SV. The ALU accumulator
supports operations such as add, load, shiftRight and logic
operations. In order to test this entirely, we need to try all
operations on the op input and all input value corner cases
on the din input. A good verification plan would thus capture
what we just described.

1 val cr = new CoverageReporter(dut)
2 cr.register(
3 cover("ops", dut.io.op)(DefaultBin(dut.io.op)),
4 cover("dataInputs", dut.io.din)(
5 bin("minValue", Integer.MIN_VALUE),
6 bin("neg1", -1),
7 bin("zero", 0),
8 bin("one", 1),
9 bin("maxValue", Integer.MAX_VALUE)))

In the above code snippet, we registered a CoverGroup that
ensures that the edge cases of all operations are tested. Here,
the implicit DefaultRange and DefaultBin functions are
used to cover all possible values for the dut.io.op port. All
that is left now is to call cr.sample() once per cycle in our
ChiselTest test class.

In order to do the same with UVM, we need to create a
UVM-subscriber based coverage class, instantiate the current
DUT, declare the verification plan, define build phase and
write functions, and define the coverage class constructor.
The UVM subscriber class must then be used inside of a whole
UVM testbench, which itself contains many other classes and
constructs.

Our second DUT has the interesting aspect of taking a
Vector of DecoupledIO elements as an input. These expand to
3 separate flattened arrays in the generated verilog, which will
make the declaration of the verification plan more complex. In
order to conduct coherent comparisons, which do not depend

Authorized licensed use limited to: Princeton University. Downloaded on May 09,2024 at 23:51:48 UTC from IEEE Xplore. Restrictions apply.

on the size of the input Vector, we have mapped these
back to 3 separate arrays. To verify this, we register cover
constructs for both the output and each input’s ready, valid,
and bits signals. With our solution, this can be done using a
foreach call on the input vector in which we simply register
the cover constructs we want. However, in SV, this is done
by creating three generic covergroups, each containing a
single coverpoint, which are then initialized in three separate
foreach loops.

ChiselVerify(CV) vs. SystemVerilog(SV) Coverage LOC

CV

SV

Leros ALU Arbiter
0

20

40

60

80

DUT

V
er

ifi
ca

tio
n

LO
C

 fo
r

co
ve

ra
ge

Fig. 3. A comparison between the lines of coverage-specific verification code
needed to gather the same coverage data using ChiselVerify and SV with
UVM. This considered code is publicly available in the example tests in the
chiselverify public repository.

Figure 3 plots the results of our verifications using our
solution and UVM. We only consider coverage-specific code,
meaning that only the uvm subscriber class is taken into
account in our UVM verification. These results clearly show
that our solution requires, on average, 30% of the amount
of verification code required by UVM, in order to describe
the same verification plan and obtain the same coverage
results. This is largely due to our tool automating many of
the structural code that must be handwritten in UVM. On top
of that, our solution enables the verification engineer to work
directly with the Chisel description, instead of the generated
Verilog, allowing for the benefits of Chisel to be fully reaped.
This shows that our work allows for the efficient definition
of coverage structures in a manner that is more concise, and
more adapted to Chisel, than existing coverage solutions.

VIII. CONCLUSION

In this paper, we described the lack of coverage-oriented
verification tools for Chisel designs and showed that existing
Scala tools do not have acceptable coverage features. To
address this, we implemented extensions to the Treadle simu-
lator and the ChiselTest framework to enable statement and
functional coverage measurements. Furthermore, we showed
that the implemented framework enables less verbose and
more advanced verification suites than what is possible using
existing tools. These features include Bins defined by an arbi-
trary predicate, and temporal logic enabled cover constructs.

ACKNOWLEDGEMENTS

We would like to thank the researchers at Berkeley who
are constantly working on making Chisel a more ubiquitous

hardware construction language and for the feedback related
to the work done on adding coverage to Treadle.

Source Access

The source code for the coverage package is available at
https://github.com/chiselverify/chiselverify.

REFERENCES

[1] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Commun. ACM, vol. 62, no. 2, pp. 48–60, Jan. 2019.

[2] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware
accelerators,” Commun. ACM, vol. 63, no. 7, pp. 48–57, Jun. 2020.

[3] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis,
J. Wawrzynek, and K. Asanovic, “Chisel: constructing hardware in
a scala embedded language,” in The 49th Annual Design Automation
Conference (DAC 2012). San Francisco, CA, USA: ACM, June 2012,
pp. 1216–1225.

[4] C. Spear, SystemVerilog for verification: a guide to learning the test-
bench language features. Springer Science & Business Media, 2008.

[5] Veripool, “Verilator,” https://www.veripool.org/wiki/verilator.
[6] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,

C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, “Reusability is
firrtl ground: Hardware construction languages, compiler frameworks,
and transformations,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2017, pp. 209–216.

[7] A. S. I. (Accellera), “Universal Verification Methodology (UVM) 1.2
user’s guide,” https://www.accellera.org/images/downloads/standards/
uvm/uvm users guide 1.2.pdf, 2015.

[8] T. Alcorn, “Basic model checking api for chisel,” https://github.com/
chipsalliance/chisel3/pull/1499, 2020.

[9] E. Tolotto, “Verification of Digital Designs with Chisel,” https://github.
com/chiselverify/documentation/tree/master/enrico-thesis, 2020.

[10] Veripool, “Systemperl,” https://www.veripool.org/projects/systemperl/
wiki/Manual-systemperl, 2020.

[11] PSL and SVA Assertion Languages. Dordrecht: Springer
Netherlands, 2008, pp. 55–82. [Online]. Available: https:
//doi.org/10.1007/978-1-4020-8586-4 4

[12] C. Dax, F. Klaedtke, and M. Lange, “On regular temporal logics with
past,” Acta Informatica, vol. 47, no. 4, pp. 251–277, 2010. [Online].
Available: https://doi.org/10.1007/s00236-010-0118-3

[13] A. Dobis, T. Petersen, H. J. Damsgaard, K. J. Hesse Rasmussen,
E. Tolotto, S. T. Andersen, R. Lin, and M. Schoeberl, “Chiselverify:
An open-source hardware verification library for chisel and scala,” in
2021 IEEE Nordic Circuits and Systems Conference (NorCAS), 2021,
pp. 1–7.

[14] M. Schoeberl, Digital Design with Chisel. Kindle Direct Publishing,
2019, available at https://github.com/schoeberl/chisel-book.

[15] B. Venners, L. Spoon, and M. Odersky, Programming in Scala, 3rd
Edition. Artima Inc, 2016.

[16] J. Bergeron, Writing Testbenches - Functional Verification of HDL
Models, 2nd ed. Springer, 2003.

[17] R. Lin. ChiselTest. https://github.com/ucb-bar/chisel-testers2.
[18] S. S. et al., “sbt-scoverage,” https://github.com/scoverage/sbt-scoverage,

2020.
[19] M. Wachs, “Test coverage,” https://www.chisel-lang.org/chisel3/docs/

developers/test-coverage.html, 2021.
[20] I. D. Baxter, “Branch coverage for arbitrary languages made easy,” http://

www.semdesigns.com/Company/Publications/TestCoverage.pdf, Austin,
Texas, 78579 USA, 2002.

[21] M. Schoeberl and M. Petersen, “Leros: The return of the accumula-
tor machine,” in Architecture of Computing Systems - ARCS 2019 -
32nd International Conference, Proceedings, M. Schoeberl, T. Pionteck,
S. Uhrig, J. Brehm, and C. Hochberger, Eds. Springer, May 2019, pp.
115–127.

[22] M. Eilers and P. Müller, “Nagini: A static verifier for python,” in
Computer Aided Verification, H. Chockler and G. Weissenbacher, Eds.
Cham: Springer International Publishing, 2018, pp. 596–603.

[23] P. Müller, M. Schwerhoff, and A. J. Summers, “Viper: A verification
infrastructure for permission-based reasoning,” in Verification, Model
Checking, and Abstract Interpretation (VMCAI), ser. LNCS, B. Jobst-
mann and K. R. M. Leino, Eds., vol. 9583. Springer-Verlag, 2016, pp.
41–62.

Authorized licensed use limited to: Princeton University. Downloaded on May 09,2024 at 23:51:48 UTC from IEEE Xplore. Restrictions apply.

