
ChiselVerify: An Open-Source Hardware
Verification Library for Chisel and Scala

Andrew Dobis∗, Tjark Petersen∗, Hans Jakob Damsgaard∗, Kasper Juul Hesse Rasmussen∗,
Enrico Tolotto∗, Simon Thye Andersen∗, Richard Lin†, Martin Schoeberl∗

∗Department of Applied Mathematics and Computer Science
Technical University of Denmark

Lyngby, Denmark

†Department of Electrical Engineering and Computer Sciences
UC Berkeley

Berkeley, CA

adobis@ethz.ch, s186083@student.dtu.dk, hans.damsgaard@tuni.fi, s183735@student.dtu.dk,
s190057@student.dtu.dk, simon.thye@gmail.com, richard.lin@berkeley.edu, masca@dtu.dk

Abstract—Modern digital hardware is becoming ever more
complex. The development of different application-specific ac-
celerators rather than traditional general purpose processors
calls for advanced development methods not only for design, but
equally so for subsequent verification. Recently, this has made
engineers propose an agile hardware development flow. However,
one of the main obstacles when proposing such a method is the
lack of efficient tools.

Chisel, a high-level hardware construction language, was
introduced in order to combat this lack. Since this already enables
agile hardware design, we instead focus our attention on the
verification flow. Thus, this paper proposes ChiselVerify, an open-
source library for verifying circuits described in Chisel. It builds
on top of Chisel and uses Scala to drive the verification process.
The solution is well integrated into the existing Chisel universe,
making it an extension of currently existing testing libraries.

Index Terms—digital design, verification, Chisel, Scala

I. INTRODUCTION

Over the past several years, hardware design has grown
to be ever more complex. The increased demand for high-
performance computing systems has lead to a larger need for
domain-specific hardware accelerators [1]. The design of these
accelerators is often complex, and their development is time-
consuming and error-prone. In order to combat this added
time-constraint, we can learn from software development
trends such as agile software development [2], and adapt to
agile hardware development [3]. Chisel [4], a Scala-embedded
hardware construction language, was introduced in order to
move digital circuit description to a more software-like high-
level language.

Hardware design is dominated by the traditional hardware
description languages (HDLs), Verilog and VHDL, and the
more recent SystemVerilog. But while SystemVerilog does

extend Verilog with object-oriented features for verification, its
hardware description flow remains the same as with Verilog.
Thus, it does not fit an agile development flow. Chisel attempts
to solve these issues by providing full support for functional
and object-oriented programming. However, Chisel is missing
efficient verification tools with limited functionality available
in the corresponding ChiselTest package [5].

As such, we choose to base our work on Chisel and
ChiselTest, and aim to raise the tooling level for a digital
design. We have developed a verification framework inspired
by the Universal Verification Method (UVM), but implemented
by leveraging Scala’s conciseness and support for both object-
oriented and functional programming. Our framework, Chi-
selVerify, supports both coverage-oriented and constrained
random verification (CRV) flows with more features than those
available in UVM.

As a showcase, we have verified an industrial use case, a
min-heap, utilizing ChiselVerify to check as many features of
the min-heap with as few lines of verification code as possible.

The main contribution of this paper is ChiselVerify 1, an
open-source verification library for hardware designs.

The paper is organized into 6 sections. Section II describes
related work. Section III describes background on hardware
verification. Section IV describes our solution for enabling
verification in Chisel, namely ChiselVerify. Section V explores
ChiselVerify on an industry-provided use case. Section VI
concludes.

II. RELATED WORK

SystemVerilog is an extension of Verilog. Many non-
synthesizable extensions are intended to write more advanced

1https://github.com/chiselverify/chiselverify978-1-6654-0712-0/21/$31.00 ©2021 IEEE

test-benches. SystemVerilog adds object-oriented program-
ming for those test-benches. However, in contrast to Chisel,
the object-oriented addition cannot be used for hardware
description. SystemVerilog offers certain constructs capable
of gathering coverage information [6], such as statement and
functional coverage. When it comes to functional coverage,
our solution differs in several ways from SystemVerilog. On
top of range-based bins, ChiselVerify’s cover constructs can
take temporal relations into account, as well as generalized
conditional bins that work using purely user-defined hit predi-
cates. This differs from SystemVerilog, which mainly focuses
on bins that cover value ranges or transitions.

The Universal Verification Methodology (UVM) was created
as a standardized way of writing test-benches on top of
SystemVerilog. It allows for the creation of reusable test-
benches (i.e., using the same test for multiple designs) [7].
However, it is inherently verbose, since even a simple test
requires around 800 lines of SystemVerilog code. UVM thus
requires a significant initial time-investment, but is reusable
once it gets up and running. UVM’s structure differs from
most traditional test-benches, making it less accessible for
newcomers than the simpler approach done by ChiselTest.

Other projects have also focused on applying software test-
ing techniques to hardware verification. RFuzz [8] focuses on
creating a generalized method that enables efficient “coverage-
guided fuzz mutational testing”. This method relies on FPGA-
accelerated simulation and new solutions allowing for quick
and deterministic memory resetting, to efficiently use fuzzing
(i.e., randomized testing, where the random seeds are mutated
depending on certain coverage results) on digital circuits. The
coverage metrics used in this solution are automated and based
on branch coverage. This work offers a different type of
solution. While we work mostly on verification functionalities
inside a language, RFuzz delivers an efficient way to use
said functionalities in order to ameliorate testing. RFuzz uses
functional coverage tools in order to guide its randomized
testing. Current work is also being done, in the scope of the
ChiselVerify project, on coverage driven mutational fuzzing
for digital circuits [9], however this is out of the scope of this
paper.
Chisel3.formal is a formal verification package con-

taining a set of tools and helpers for formally veri-
fying Chisel modules [10]. In contrast to ChiselVerify,
chisel3.formal proposes way of testing based around
defining a set of formal checks that a design must pass in
order to be considered as correct. These checks can, for
example, look like: past(io.out, 1) (pastIoOut => {
assert(io.out >= pastIoOut) }) which guarantees that
the current module will never decrease its output from one
cycle to the next. These formal checks can then be verified by
calling the verify(module) function.

This approach is similar to software contracts in Scala, like
the ones enabled by ScalaCheck [11]. The main difference be-
tween our solution and this one is that here the rules are written
on a per-module basis and are thus directly linked to the Chisel
code, while our solution focuses on checking that a suite of

test-benches is testing the right things. The chisel3.formal
package has also been extended in kiwi-formal [12] and
dank-formal [13], each adding their own additional formal
rule templates.

As far as we know, ChiselVerify is the only verification
framework allowing for the easy use of verification function-
alities, well integrated into the ChiselTest-Chisel ecosystem.

III. BACKGROUND

This section presents a brief overview of what hardware
verification is. We also briefly present Chisel and the current
solutions that exist in it with regards to the verification of
digital designs.

A. Verification of Digital Designs

Verification of digital designs refers to the testing of a design
before it has been taped-out [6]. SystemVerilog [14] is one of
the main languages used for verification. The language enables
verification engineers to define constraint-driven randomized
test-benches and define metrics to gather functional coverage
data related to a test suite. However, being embedded in a
low-level language makes writing tests quite complex. The
three main verification features that we are interested in are:
functional coverage, constrained random verification, and bus
functional modeling.

1) Functional Coverage: One of the main tools used in
verification is test coverage. This allows verification engineers
to measure their progress throughout the testing process and
understand how effective their tests are. In contrast to the more
common statement coverage, which defines a quantitative
measure of the testing progress “How many lines of code
have been tested?”, functional coverage gives a qualitative
measure, “Which functionalities have we tested?” [6]. Func-
tional coverage enables the measurement of how correctly
the specification has been implemented. This is measured
relative to a verification plan, which includes the following
components:

• Bins: Ranges of values that should be tested for (i.e.,
expected values of a given port).

• Cover constructs: Ports that need to be sampled in the
coverage report, defined using a set of bins.

2) Constrained Random Verification: CRV allows the ver-
ification engineer to create random variables which gener-
ate values that satisfy a set of associated constraints. With
constrained random inputs, a relatively small test suite can,
statistically, cover many of a component’s functionalities. In
addition, the constraints help to ensure that no invalid input
combinations that would not appear during regular operation
are applied [15].

These constraints define a constraint satisfaction problem
(CSP). CSP represents the entities of a problem as a finite
homogeneous collection of constraints. CSP solvers thus serve
as the basis for generating sets of constrained random signal
values for verification.

SystemVerilog has native support for constrained random
data types and a built-in CSP solver. Variables declared with

Testing

Chisel / Scala Transform
High FIRRTL

Transform
Mid FIRRTL Low FIRRTL

FIRRTL Compiler

Simulation

Testing

Treadle

Verilog
Emitter

Synthesis

Verilog

VCD

Circuit
Synthesis

Simulation

Verilator

Test
Results

VCDbit file

ChiselTest
Testing

ChiselVerify

Fig. 1: Overview of the Chisel compilation pipeline.

the rand keyword are randomizable upon calling a randomize
method.

3) Bus Functional Models: A bus functional model (BFM)
is an abstract model of a (standardized) interface that enables
interacting with manager or subordinate components at a
transaction level rather than at the level of individual wires.
Many synthesis tools, including Xilinx’s Vivado, provide IP
generators whose output IP blocks are equipped with such
interfaces. BFMs thus enable simpler, safer, and less verbose
interactions with interfaces like, e.g., AXI.

B. Digital Design with Chisel

Our verification library is used for designs described in
Chisel. Chisel is a “hardware construction language” embed-
ded in Scala, used to describe digital circuits [4]. This language
is more high-level than the traditional hardware description
languages, such as VHDL or Verilog, and enables object-
oriented and functional programming in the context of digital
design.

Since Chisel and Scala are executing on the Java virtual ma-
chine (JVM), they have an excellent interoperability with Java.
We can therefore leverage a large pool of both Java and Scala
libraries for hardware design and verification. Furthermore,
the packaging system in Scala/Java simplifies the integration
of external components.

Working in the JVM also allows for the use of the Java
native interface, which enables JVM based languages to call C
functions. This enables co-simulations between Scala testers,
Chisel designs, and a C-based golden model. This should allow
companies to keep their existing C models, but move their
simulation workflow into Scala/Chisel testers.

Chisel translates the hardware description into an inter-
mediate representation called FIRRTL [16]. It then performs
multiple optimization stages, called transforms, during which
high-level concepts, such as a functional map or vectors,
are compiled into lower-level concepts that map onto what
we usually see in a Verilog or VHDL description. Once
that is done, the newly transformed FIRRTL, called Low
FIRRTL, can be used either for simulation, using an execution
engine such as Treadle, or for synthesis by translating it
into Verilog, which is then used to generate the synthesized
circuit. Note that the final Verilog description may also be used

for simulation purposes using engines such as Verilator [17].
Figure 1 shows an overview of the Chisel compilation pipeline.

C. Testing Chisel Designs

A digital design described in Chisel can be tested with
ChiselTest [5], a non-synthesizable testing framework for
Chisel. ChiselTest emphasizes on usability and simplicity
while providing ways to scale up in complexity. Fundamen-
tally, ChiselTest is a Scala library that provides access into
the simulator through operations like poke (write value into
circuit), peek (read value from circuit), and step (advance
time). As such, tests written in ChiselTest are just Scala
programs, imperative code that runs one line after the next.

ChiselTest is missing fundamental verification functional-
ities that can improve the verification efficiency of Chisel
designs. It is currently not possible to do things such as
constrained random testing or obtaining functional coverage
results while solely relying on the ChiselTest framework.
Functionalities such as those are crucial when it comes to
efficiently verify one’s design.

IV. VERIFICATION WITH CHISEL

We propose ChiselVerify, a verification library written in
Scala. ChiselVerify uses the device under test (DUT) in-
terfacing features from ChiselTest in order to enable three
main verification functionalities in Chisel: functional coverage,
constrained random verification, and bus functional modelling.
We also show how our framework can be used to create a bus
functional model by creating one for the standardized AXI4
interface. The following subsections explain each functionality
and present how to use it.

A. Coverage in Chisel

Our solution enables one to define functional coverage
constructs for Chisel designs in Scala. In order to implement
the different components needed for functional coverage in
Scala, we needed to be able to do the following:

• Define a verification plan, using cover constructs.
• Sample DUT ports, using the ChiselTest framework.
• Keep track of bins to sampled value matches, using a

coverage database.
• Compile all of the results into a comprehensible coverage

report.

Implementing these elements was done using a struc-
ture based around a top-level element known as the
CoverageReporter, enabling one to define a verification
plan using a register method. This method stores cover
construct to bin mappings inside a CoverageDB (DB being
short for a database) object. Once the verification plan is
defined, ports are sampled using the sample method, which is
implemented using ChiselTest’s peeking capabilities. Finally,
at the end of a test suite, a functional coverage report is
generated using the report method, which compiles the
results stored in the database into a Scala case class which
can be used to obtain coverage percentages and bin hit counts.

1 val cr = new CoverageReporter
2 cr.register(
3 cover("accu", dut.io.accu)(
4 bin("lo10", 0 to 9),
5 bin("First100", 0 to 99)),
6 cover("test", dut.io.test)(
7 bin("testLo10", 0 to 9)),
8 cover("accuAndTest", dut.io.accu, dut.io.test)(
9 cross("both1", 1 to 1, 1 to 1))

Listing 1: Small Verification Plan defined using 3 cover
constructs, including one cross coverage construct

Listing 1 is an example of how to define a verification
plan using our functional coverage tool. One concept used
here is cross coverage defined using a cover construct on
multiple ports. Cross coverage allows one to specify coverage
relations between different ports. This means that a cross
defined between, e.g., dut.io.a and dut.io.b will be used
to gather information about when a and b cover specific values
simultaneously [6]. In listing 1, we are checking that accu and
test take the value 1 at the same time.

Once our verification plan is defined, we need to decide
when we want to sample our cover points using our coverage
reporter. This can be done, in our example, simply by calling
cr.sample() when we are ready to sample our points. Finally
once our tests are done, we can ask for a printed coverage
report by calling cr.printReport() which results in the
following:

=============== COVERAGE REPORT ===============

================= GROUP ID: 1 =================

COVER_POINT PORT NAME: accu

BIN lo10 COVERING 0 to 9 HAS 8 HIT(S) = 80%

BIN First100 COVERING 0 to 99 HAS 9 HIT(S) = 9%

===

COVER_POINT PORT NAME: test

BIN testLo10 COVERING 0 to 9 HAS 8 HIT(S) = 80%

===

CROSS_POINT accuAndTest FOR POINTS accu AND test

BIN both1 COVERING 1 to 1 CROSS 1 to 1 HAS

1 HIT(S) = 100%

===

In the above report, we can see that our two cover constructs
are listed and that each one of their bins has an associated
number of hits. This represents how many times the port had

a unique value sampled within the given range. A coverage
percentage is then given for each bin, representing the ratio
between the number of hits and the total number of possible
values in the range.

Another element that our framework offers is gathering
delayed coverage relationships between two coverage points.
The idea is similar to how a cross works, but this time rather
than sampling both points in the same cycle, we compare one
port, at the starting cycle, to another port sampled a given
number of cycles later. This number of cycles is called the
delay, and there are currently three different ways to specify
it:

• Exactly delay means that a hit will only be considered
if the second point is sampled in its range a given number
of cycles after the first point was.

• Eventually delay means that a hit will be considered
if the second point is sampled in its range at any point
within the following given number of cycles after the first
point was.

• Always delay means that a hit will be considered if the
second point is sampled in its range during every cycle
for a given number of cycles after the first point was
sampled.

Finally, we exploit the functional nature of Scala in order to
allow for conditional cover points, which offer the possibility
to create fully custom hit-consideration rules using a user-
defined predicate. This allows the user to check for arbitrary
relations between an arbitrary number of ports. One could
then, e.g., create a bin that considers a hit every time all
fields in a vector are equal. This is defined simply by adding
a function of type Seq[BigInt] => Boolean to a cover
construct’s bin. The report then shows the number of hits
that each condition had throughout the test suite. Adding an
“expected number of hits” to each condition allows for a final
percentage to be shown alongside the number of hits.

These features allow for the definition of complex verifica-
tion plans that can be used to represent any given specification,
making it possible to verify the correct testing of any design.
In addition, supporting a coverage measure directly in the
testing tool also enables modern verification strategies such
as constrained random verification.

B. Constrained Random Verification

To make best use of a coverage-driven verification flow, one
needs access to CRV tools. Such tools are, as explained before,
included in SystemVerilog, and we provide another implemen-
tation in ChiselVerify. ChiselVerify provides a wrapper to an
existing CSP solver, named JaCoP [18], and a domain-specific
language, which allows users to declare and randomize objects.

1) Constraint Programming with ChiselVerify: To begin
writing constrained random objects using our library, one must
define a class that extends the RandObj trait while initializing
it with a Model. A Model represents a database in which all
of the RandObj’s random variables and constraints are stored.
This RandObj will then contain all of the constraints and
random variables we will use in our constrained random tests.

There are two main constructs that can be defined inside of a
RandObj: random variables and constraints.

a) Random variables: These represent random value
generators and are associated to constraints. Random variables
can either be regular, meaning that they can take any value
satisfying the constraints, or cyclic, meaning that they can not
take the same values twice until all values have been covered.
Both types are declared using a lower and an upper bound. For
example, if we create a rand(0, 5, Cyclic), we will never
get the same value twice if we sample it six times, however,
on the 7th sampling, the cycle will be reset, and we will start
to re-obtain old values.

b) Constraints: Constraints can either be defined alone
or in ConstraintGroups. Constraint operators are applied on
random variables to create constraints. Conditional constraints
may also be defined using the IfCond and ElseC constructs.
All of these constraints can then be enabled and disabled when
needed throughout the test suite.

c) Using a RandObj: Once defined, random objects
are instantiated and then randomized using the randomize
method which returns wether or not the constraints were
solvable by the CSP solver. The random variables can then
be accessed using their respective value() methods.

1 class Packet extends RandObj(new Model(3)) {
2 val idx = rand(0, 10)
3 val size = rand(1, 100)
4 val len = rand(1, 100)
5 val payload: Array[Rand] =

Array.tabulate(11)(rand(1, 100))

7 //Example Constraint with operations
8 val s: Constraint = (payload(0) == (len - size))

10 //Example conditional constraint
11 val cond = IfCon(len == 1) {
12 payload.size == 3
13 } ElseC {
14 payload.size == 10
15 }
16 val idxConst = idx < payload.size
17 }

Listing 2: Usage of a random object. rand(min, max,
type=Normal) is used to declare a random variable. Any
operation on a random variable generates a constraint.

Listing 2 presents the different ways to define a random
variable with constraints. One can define collections of random
variables and create constraints on those collections, as was
done, for example, in the payload random variable. Con-
ditional constraints are shown in the conditional random
variable, where the constraint depends on the value of the
len random variable.

Combining constraint-random objects with the provided
coverage features enables writing simple coverage-driven ran-
domized tests. However, this may be further optimized by ab-
stracting away groups of wires and operating on an operation
or transaction level instead.

C. Verification with Bus Functional Models

Finally, many designers ensure portability and flexibility
by equipping their designs with standardized interfaces. The
verification engineers can test such components by combining
CRV and coverage measures with BFMs to abstract their
operation to a transaction level. In this work, we provide an
example BFM for AXI4, an open standard by ARM [19].

1) Introduction to AXI4: The Advanced eXtensible Inter-
face (AXI) protocol by ARM is a highly flexible interconnect
standard based around five independent channels; three for
write operations and two for read operations. Operations,
known as transactions, consist of transfers across either set
of channels. All channels share a common clock and active-
low reset and base their transfers on ready-valid handshaking.
The write channels are Write Address, Write Data, and Write
Response. The read channels are Read Address and Read Data.

Consider, for example, a write transaction of 16 data el-
ements in which the manager first provides the transaction
attributes (e.g., target address and data size) as a single transfer
over the Write Address channel followed by the 16 data
elements one at a time over the Write Data channel. Finally,
the subordinate indicates the status of the transaction over the
Write Response channel. Beware that the write data may be
transferred prior to the transaction attributes due to channel
independence, and similarly, the Read Address and Read Data
channels may operate independently at the same time [19].

2) Implementation: Our implementation of an AXI4 BFM
includes bundles defining the five different channels, ab-
stract classes representing both manager and subordinate
entities, transaction-related classes, and the BFM itself, the
FunctionalManager class. The BFM is parameterized with a
DUT that extends a Subordinate class and provides a simple,
transaction-level interface to control the DUT. As such, its
two most important public methods are createWriteTrx and
createReadTrx, which do precisely as their names indicate;
create and enqueue write and read transactions.

Internally, the BFM makes use of ChiselTest’s multithread-
ing features to allow for (a) non-blocking calls to the methods
mentioned above (i.e., one can enqueue multiple transactions
without waiting for their completion) and (b) emulating the
channel independence more closely. When, for example, a
write transaction is enqueued, and no other write transactions
are in-flight, the BFM spawns three new threads, one for each
required channel. The threads each handle the handshaking
necessary to operate the channels.

3) A Test Example: Consider as an example using the BFM
to test a module called Memory, as shown below. Creating a
write transaction with 16 data elements (minimum burst length
is 1, hence len = 15 means a burst of 16 items) takes just
one call to a method the majority of whose arguments have
default values. It is equally simple to create a subsequent
read transaction. Beware that due to channel independence,
not waiting for a write to complete before starting to read
from the same address may return incorrect results depending
on the implementation of the DUT.

1 //[...] ChiselTest class delcaration
2 test(new Memory()) { dut =>
3 val bfm = new FunctionalManager(dut)
4 bfm.createWriteTrx(0, Seq.fill(16)
5 (0x7FFFFFFF), len = 15, size = 2)
6 bfm.createReadTrx(0, len = 15, size = 2)
7 }

Listing 3: Using the AXI4 BFM with ChiselTest

V. USE CASE: SORTING IN HARDWARE

In our research, we received a use case from Microchip [20]
in the form of a specification. We implemented and used it to
evaluate our verification library.

A. Specification

The provided use case is a hardware implementation of
a priority queue, which can be used in real-time systems
requiring scheduling capabilities. For instance, timestamps for
deadlines can be inserted and sorted such that the host system
has access to the closest deadline.

Internally, the hardware priority queue relies on a min-heap
tree data structure. The run-times of insertion and removal
operations, both having a complexity of O(logk N) where N is
the number of elements and k the number children per node,
are bound by the depth of the tree. By increasing k, the depth
of the tree, as well the run-times, can be reduced.

In order to remove elements from the priority queue, a
reference ID is needed. Therefore, a reference ID must be
added to each element by the priority queue’s user.

B. Testing and Verification

The presented CRV and functional coverage functionalities
of the ChiselVerify framework were used to verify the modules
and the fully assembled queue. Due to the simple interface of
the priority queue, which only consists of two boolean flow-
control inputs alongside the data fields, only distributional
constraints were used to reduce the number of transactions
marked as invalid.

The functional coverage report was then used to check how
well the inputs were spread over the spectrum of possibilities
and to check whether certain input combinations were applied
to the DUT at some point throughout the test. As an example,
the timed coverage feature made it easy to check whether the
valid input of the DUT was revoked at some point within 10
clock cycles after issuing an operation by adding the following
cross-coverage group:

1 cover("timed_valid", dut.io.valid, dut.io.valid)(
2 Eventually(10))(
3 cross("revoked_valid_under_op", 1 to 1, 0 to 0))

Listing 4: A timed cover construct.

In order to check whether the DUT matched the specifica-
tion, a reference model was written for each module. As a ref-
erence model for the whole priority queue, a class was written
which simulates state and interaction on a transaction/query
level. In order to abstract interaction with the DUT, wrapper

classes (i.e., classes similar to BFMs) were employed. These
make it easy to think on a transaction or operation level when
writing tests.

To evaluate the efficiency of ChiselVerify, in terms of
lines of code needed, we also verified our sorting hardware
with UVM. The main difference, we found, between the two
methods was UVM’s necessity for boiler-plate classes in order
to maintain its reusability. For example, gathering the same
functional coverage data using UVM required the following:

• Create a UVM-subscriber based coverage class.
• Instantiate the current DUT (Heapifier dut = new;)
• Declare the verification plan:

1 covergroup cg_all_zeros_ones;
2 OPS: coverpoint dut.cmd.op {
3 bin insertion = {0};
4 bin removal = {1};
5 }
6 //...

• Define build phase and write functions.
• Define the coverage class constructor.

The UVM subscriber must then be used inside of a whole
UVM test-bench, which itself contains many other classes
and constructs. This also holds for UVM’s random objects.
For comparison, our ChiselVerify test-bench is defined with
just 24 lines of code, while its UVM counterpart takes up
96 lines, including only the uvm subscriber class. This is
a significant reduction and provides a good indication of how
our Scala-based solution minimizes the amount of code needed
to utilize advanced verification features.
In summary, for functional coverage, all that needs to be done
is to define a verification plan and sample it during a test, and
CRV can be done by defining just a random object.

VI. CONCLUSION

In this paper, we introduced ChiselVerify, an open-source
solution that should increase a verification engineer’s produc-
tivity by following the trend of moving towards a more high-
level and software-like ecosystem for hardware design. When
using it to test an industry-provided use case, we showed that it
requires far less lines of code than UVM, all while obtaining
similar results. ChiselVerify’s lightweight syntax allows the
user to access these helpful tools in a timely manner, thus
making it a better fit for agile development than other solutions
such as UVM. With this, we brought functional coverage,
constrained random verification, and bus functional models
to the Chisel/Scala ecosystem, thus improving the current
engineer’s efficiency and easing the way for software engineers
to join the hardware verification world.

Source Access

This work is in open source and hosted at GitHub:
https://github.com/chiselverify/chiselverify. We plan also to
regularly publish it on Maven.2

2https://mvnrepository.com/artifact/io.github.chiselverify/chiselverify

https://github.com/chiselverify/chiselverify

REFERENCES

[1] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware
accelerators,” Commun. ACM, vol. 63, no. 7, pp. 48–57, Jun. 2020.

[2] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham,
M. Fowler, J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern,
B. Marick, R. C. Martin, S. Mellor, K. Schwaber, J. Sutherland,
and D. Thomas. (2001) Manifesto for agile software development.
https://agilemanifesto.org/.

[3] J. L. Hennessy and D. A. Patterson, “A new golden age for computer
architecture,” Commun. ACM, vol. 62, no. 2, pp. 48–60, Jan. 2019.

[4] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis,
J. Wawrzynek, and K. Asanovic, “Chisel: constructing hardware in
a scala embedded language,” in The 49th Annual Design Automation
Conference (DAC 2012). San Francisco, CA, USA: ACM, June 2012,
pp. 1216–1225.

[5] R. Lin. ChiselTest. https://github.com/ucb-bar/chisel-testers2.
[6] C. Spear, SystemVerilog for verification: a guide to learning the test-

bench language features. Springer Science & Business Media, 2008.
[7] A. S. I. (Accellera), “Universal Verification Methodology (UVM) 1.2

user’s guide,” https://www.accellera.org/images/downloads/standards/
uvm/uvm users guide 1.2.pdf, 2015.

[8] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “Rfuzz:
Coverage-directed fuzz testing of rtl on fpgas,” in 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2018,
pp. 1–8.

[9] A. Dobis, T. Petersen, and M. Schoeberl, “Towards functional coverage-
driven fuzzing for Chisel designs,” in Proceedings of the Fourth Work-
shop on Open-Source EDA Technology (WOSET), 2021.

[10] T. Alcorn, “Chisel formal verification,” https://github.com/tdb-alcorn/
chisel-formal, accessed: 2021-06-03.

[11] R. Nilsson, ScalaCheck: The Definitive Guide. Artima Inc, 2014.
[12] K. Laeufer, “Chisel formal verification extension,” https://github.com/

ekiwi/kiwi-formal, accessed: 2021-06-03.
[13] D. Kasza, “Chisel formal verification extension,” https://github.com/

danielkasza/dank-formal, accessed: 2021-06-03.
[14] IEEE Standard for SystemVerilog – Unified Hardware Design, Speci-

fication, and Verification Language, IEEE Std 1800-2017 (Revision of
IEEE Std 1800-2012) Std., 2018.

[15] A. B. Mehta, Constrained Random Verification (CRV). Cham:
Springer International Publishing, 2018, pp. 65–74. [Online]. Available:
https://doi.org/10.1007/978-3-319-59418-7 5

[16] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar, D. Kim,
C. Schmidt, C. Markley, J. Lawson, and J. Bachrach, “Reusability is
firrtl ground: Hardware construction languages, compiler frameworks,
and transformations,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2017, pp. 209–216.

[17] Veripool, “Verilator,” https://www.veripool.org/wiki/verilator.
[18] K. Kuchcinski and R. Szymanek, “Jacop - java constraint programming

solver,” 2013, cP Solvers: Modeling, Applications, Integration, and
Standardization, co-located with the 19th International Conference on
Principles and Practice of Constraint Programming ; Conference date:
16-09-2013.

[19] ARM, “Amba axi and ace protocol specification axi3, axi4, and axi4-lite
ace and ace-lite,” https://developer.arm.com/documentation/ihi0022/e/.

[20] “Microchip,” https://www.microchip.com/, accessed: 2021-08-29.

https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://www.accellera.org/images/downloads/standards/uvm/uvm_users_guide_1.2.pdf
https://github.com/tdb-alcorn/chisel-formal
https://github.com/tdb-alcorn/chisel-formal
https://github.com/ekiwi/kiwi-formal
https://github.com/ekiwi/kiwi-formal
https://github.com/danielkasza/dank-formal
https://github.com/danielkasza/dank-formal
https://doi.org/10.1007/978-3-319-59418-7_5
https://www.veripool.org/wiki/verilator
https://developer.arm.com/documentation/ihi0022/e/
https://www.microchip.com/

