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Acknowledgments

Thank you to Zhendong Su for taking the time to follow my progress through-
out the past 6 months.

I also thank the CIRCT developers, particularly Andrew Lenharth, Fabian
Schuiki, Mike Urbach, and Leon Hielscher for the detailed reviews and
discussions that we had around this work.

Thank you to Morten Borup Petersen for sharing his in-depth knowledge
about the CIRCT project with me and helping me acquire the necessary skills
to start, debug, and complete this work.

Thank you to the students of the SLICE lab, in particular Tianrui Wei, who
shared the valuable expertise he had from working on a similar problem in
the past, and Charles Hong, who took the time to help me debug and run
my automated testing suite.

Thank you to my friends Marie, Matthieu, and Fred who have supported me
along the way and came halfway across the world to California with me to
help me move and settle into this foreign place. I would also like to thank
my cats Sami and Tiramisu for keeping me sane during the difficult periods
of this thesis.

A special thanks is needed for eyes robson who supported me throughout
my thesis, during both the difficult and easier times, and took the time to
meticulously proofread the final work.

Finally, thank you to Kevin Laeufer for being an amazing advisor, not only
for this thesis, but also for leading me through this difficult project, for
helping me apply to PhD programs, for helping me get an internship, and for
generally being a good person who always took my well-being into account
and allowed me to do the best work I could have done during this short
thesis. I hope that I will be able to work with you again in the future.

Berkeley, California, USA - April 15th 2024 - Amelia Dobis

i





Abstract

Modern hardware development is increasingly turning to high-level hardware
construction languages to speed up hardware development. CIRCT aims
to unify these languages into a single MLIR-based compiler, which allows
for various domain-specific intermediate representations (IR) to be used in
the same bit of code. While the design capabilities of these new languages
surpass those of their predecessors, i.e. SystemVerilog and VHDL, they lag
far behind them in terms of verification functionalities. As a result, engineers
implementing designs in high-level hardware construction languages find
themselves relying on SystemVerilog to verify those designs. In this thesis,
I aim to unify verification support for these high-level hardware languages
into a single compiler. To do so, I implement a novel formal back end
for the CIRCT compiler that supports the creation of formal descriptions
of digital hardware designs implemented in any of CIRCT’s front ends,
so they can be used for Bounded Model Checking (BMC). Additionally,
I enable the use of SystemVerilog-like temporal properties through direct
lowerings into synthesizable logic, so they can be supported by any tool
that understands synthesizable logic, including my formal back end. These
two passes are verified using custom automated testing tools. With these
contributions to CIRCT, engineers now have access to an open-source, end-
to-end formal verification flow that supports temporal specifications, that is
entirely integrated into a single compiler.
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Chapter 1

Introduction

The ever-increasing demand for performance has lead to a rise in domain-
specific accelerators [24]. These accelerators are being design and imple-
mented under ever-shortening time constraints. However, traditional hard-
ware development languages lack the efficiency needed to keep up with
this trend. As a result, several high-level hardware languages were born,
each promising to increase the efficiency of implementing designs [10, 49].
Many of these languages build on-top of previous infrastructure and add
their own custom compiler that allows them to map their high-level se-
mantics to low level circuit descriptions in a common industry standard
language like Verilog using a software-embedded domain-specific language
(DSL) [40, 64, 9, 62]. This approach led to many different tool-chains being
created, each with a relatively low adoption rate. CIRCT [48] is a unified
hardware compiler based on MLIR [47] that offers a solution to this problem
by using many of these high-level hardware languages as its front ends and
by supporting several targets including Verilog [32].

When these high-level languages were developed, the focus was mostly on
design functionalities, not verification [9]. This created a gap in the capa-
bilities of these tools. While implementing a design could be done very
efficiently, verifying the same design relies on manipulating the compiled
Verilog rather than the high-level source design. This reliance on tools for a
different language drastically increases the overhead of verifying designs im-
plemented in a high-level hardware language and has limited their adoption
outside of academia.

Because of the high costs of fabricating hardware, engineers are often re-
quired to give strong guarantees on the correctness of their designs. Formal
verification [14], i.e. using static analysis and symbolic techniques to prove
the correctness of a design against a specification, has become a popular
approach [41]. While it requires specialized knowledge to write correct speci-
fications, checking them using Bounded Model Checking provides stronger
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1. Introduction

guarantees than many dynamic approaches.

One main issue related to writing specifications for hardware design is
the difficulty in expression timing constraints, which are very important in
sequential designs, in a concise way that can used in formal verification.
An industry standard for this is SystemVerilog Assertion properties and
sequences [1] for SystemVerilog [6], and PSL [5] for VHDL [3], which allow
the user to express sequences of events and relations between events across
multiple clock cycles. These temporal semantics are complex and difficult
to implement [18], thus only a small subset of often commercial tools for
Verilog (the target for many of these high-level languages) support it, greatly
limiting the use of such an important set of semantics.

This leads to the main problem this work is trying to solve. With the
existence of a unified compiler for high-level languages [48], there should
be also be a unified infrastructure for verification. In this thesis, I solve one
of the verification gaps, by introducing an end-to-end compilation flow for
formal verification. In addition, I unify the encoding and implementation
of temporal logic in the same compiler in order to use it to express timing
relations within my verification flow. This new, fully open-source, end-to-end
formal verification flow is then verified using custom automated testing
techniques. This formal verification flow is fully integrated into the compiler
for Chisel [9], a widely used high-level hardware language, called firtool

through the use of a single flag.

This work introduces two new compiler passes to the CIRCT compiler, a new
compilation flow integrated into firtool, and two open-source automated
testing tools for btor2 [53] and SystemVerilog. The first compiler pass
converts the core design dialects of the CIRCT project into the btor2 format
for bounded model checking [21]. The second pass introduces a lowering for
the two most common temporal properties used in practice, non-overlapping
implication and concatenation, and outputs an MLIR description in the core
dialects. These two passes are combined into the --btor2 flag of the compiler
and allow for an end-to-end compilation flow from any of CIRCT’s front ends
to a model checking format, while supporting the use of temporal relations
in the specification.

The contributions of this work are available as part of the CIRCT project1.
The formal compilation flow is fully merged into the main project, and the
SVA property and sequence lowering has gone through extensive reviews
and is expected to be merged into CIRCT in the near future.

1https://github.com/llvm/circt

2

https://github.com/llvm/circt


Chapter 2

Background

This chapter covers the necessary background for this thesis, including con-
cepts from hardware development, formal verification, the CIRCT compiler,
SystemVerilog, and Linear Temporal Logic (LTL).

2.1 Hardware Development

We begin with a discussion about current hardware development practices,
the tools they rely on, and the types of languages they use to express their
designs.

2.1.1 Hardware Languages

There many different types of languages that engineers can use to describe
the digital hardware designs they are trying to implement. We will group
these languages into three broad categories:

• Hardware Description Languages (HDL): These languages directly
express the hardware we are trying to describe, usually at the Register
Transfer Level (RTL) [30]. This includes languages such as Verilog [6]
or VHDL [3], which are the industry standard.

• Hardware Construction Languages: These languages are often used
to express high-level parameterized concepts that can then be used to
generate lower-level RTL descriptions. These have become popular with
agile hardware development methodologies [49, 10] as they allow for a
more efficient description of hardware. Languages such as Chisel [9],
Magma [64], or Amaranth [70] can be included in this category.

• High-Level Synthesis (HLS): This category encompasses methods that
transform a behavioral software program into a hardware description
with logically equivalent semantics [22]. This is often used in conjunc-
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2. Background

tion with other high-level hardware languages to simplify the creation
of domain-specific hardware accelerators [56].

There are of course other categories, such as rule-based languages like
BlueSpec [16] or BlueSpec Verilog [55], or domain-specific languages such as
the Processor Description Language [75]. In this work, we focus on expanding
the verification-related capabilities of hardware construction languages such
as Chisel, Magma, and also newer innovative hardware infrastructures such
as Calyx [54].

2.1.2 Designing Hardware

Digital hardware designs can very broadly be separated into two categories:

• Combinatorial Designs: These designs do not depend on a clock. The
outputs of these designs are purely logical function of the current
inputs, so there is no state in the circuit.

• Sequential Designs: These depend on a clock which triggers the
storage and updating of information inside of stateful elements such as
registers or memory. In a sequential design, the output is a function of
both current and past input values.

Generally speaking, hardware is often a combination of both combinatorial
and sequential logic, and thus any encoding of it should support both types
of logic [57].

2.1.3 Verifying Hardware

Unlike software, the final goal of designing hardware is often to produce a
physical silicon chip that can be used in real-world systems. This production
process is called a ”tape-out” and is incredibly expensive to do. Because of
this, a lot of effort is put in to verifying that a design is near perfect, or at
least matches its specification, before producing the physical chip [41].

This process is often done by relying on design simulation, which is the
process of converting a design into a semantically equivalent software model
that can be run and interacted with on a computer. The most popular HDL
is currently SystemVerilog [6], so many simulators have been implemented
for this language, both as open-source and commercial tools.

The way we stimulate our design is by wrapping it in what is called a test
bench. This is simply a program, usually described in the same language as
the design, that instantiates the Design Under Test (DUT) and feeds it inputs
and checks its outputs [57]. This can of course be made arbitrarily complex
using methods such as hardware design fuzzing [46, 63, 37] and constrained
random testing [28]. In HDLs such as SystemVerilog, test benches can be
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2.2. SystemVerilog

written in SystemVerilog. They function by defining the interface for the
DUT and then stimulating it with inputs before using this interface to check
the value of the outputs. This check is usually done against a software model
of the same design, called the golden model. Some tools, such as cocotb [35]
allow for test benches for HDLs like SystemVerilog or VHDL to be written in
Python instead of in the HDL itself.

For Hardware Construction Languages (HCLs), the idea is to utilize the
general-purpose programming languages that they are embedded in to write
the test benches [9]. This requires testing libraries that allow the user to
interact with a DUT during a simulation directly in a software-based test,
e.g. ChiselTest [50], which can be used to interact with and simulate Chisel
designs from a Scala [68] test bench. This design decision has led to certain
gaps in the verification-specific functionalities of HCLs, so oftentimes using
the host-language’s features isn’t enough. This is why certain additional
libraries such as ChiselTest and ChiselVerify [28] were created. These add
verification and test bench capabilities to Chisel through a small set of custom
instrumentation passes and a robust tool set built directly in Scala. This
allows for similar functionalities to solutions such as cocotb but directly in
the source language of the design, thus reducing the overall tooling overhead.

A constant in all of these solutions is that they are small and often incomplete
compared to the hyper-engineered commercial tools that are available for the
traditional RTL languages.

2.2 SystemVerilog

SystemVerilog is the core language upon which most high-level hardware
languages rely [9, 64, 62, 70], and much of the work presented in this thesis
will either use or transform elements of this language. This section serves as
a brief introduction to SystemVerilog while focusing mainly on its verification
functionalities.

2.2.1 Overview of the Language

SystemVerilog is an extension of the HDL Verilog that adds a lot of non-
synthesizable elements, i.e. constructs that do not explicitly describe hard-
ware, such as object-oriented programming concepts, several verification
functionalities [4], and an entirely new sub-language, known as SystemVer-
ilog Assertions [1] used to express temporal logic [6]. The language consists
of over 250 keywords that allow for the expression of incredibly complex con-
structs across several domains. This amount of complexity in the language
has lead to many compilers and tools for this language only supporting a
subset of the sub-language — usually the core Verilog language with a few
additional verification constructs [20]. Figure 2.1 shows an example of a
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2. Background

module Counter(input clock, reset, en);

logic [31:0] count; // 32-bit register named count

always @(posedge clock) begin

if (reset)

count <= 32'h0; // On reset set count to 0

else if (count != 32'h16 & en) // if(count is not 22)

count <= count + 32'h1;
else if (count == 32'h16 & en)

count <= 32'h0;
assert(count != 32'ha); // check that count is not 10

end // always @(posedge)

endmodule

Figure 2.1: Example of a sequential design described in SystemVerilog. Modules are the core
abstraction level used in SystemVerilog (similar to a struct in software languages). Every construct
in the language is defined using explicit bit-widths. An important distinction from general-purpose
programming languages, which mostly focus on sequential execution, is the highly concurrent
event-driven style expressed using @ keywords, e.g. @(posedge clock) meaning ”in the event of
a rising edge of the clock”. The always keyword is used to signify indefinite repetition, which
in practice starts a process that is triggered by its input sensitivity list. Literals are described
in hexadecimal using ’h, decimal using ’d, or binary using ’b, and must have a bit-width, e.g.
32’h16 is a 32-bit literal of value 22. This circuit is a direct lowering of the Chisel design described
in Figure 2.8 using CIRCT.

simple counter design described in SystemVerilog. SystemVerilog is defined
by the IEEE 1800-2023 standard [6].

In this work, I will focus mainly on the verification features of the language.
More specifically, I will be focusing on the temporal expressions that can be
described using SVA properties and sequences.

2.2.2 Linear Temporal Logic (LTL)

Before describing SVA properties and sequences, it is important to understand
a bit of the context in which I am working — and why this particular subset
of the language is so difficult to implement in practice. SVA properties and
sequences allow us to express a form of Linear Temporal Logic (LTL) [67].
While SVA properties can express more than what is possible with LTL, LTL
still remains a core aspect of the language. LTL is a type of higher-order
logic [69] that allows us to express relations between parts of our design
across different clock cycles. Table 2.1 contains a few examples of LTL
expressions that I seek to express in the high-level hardware languages used
in this work. These mostly express ideas such as concatenation, i.e. two events
consistently happening a few cycles apart, non-overlapping implication, i.e.
one event implying another at a later cycle, and variable delays, i.e. events
that can happen within a cycle range and not necessarily in a specific cycle.
Conceptually, these concepts are easy to express individually, however, they
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2.2. SystemVerilog

LTL Expression Description
G(A & XB) B will always hold one cycle after A holds
G(A -> XB) If A holds then B will hold one cycle later

G(A -> (B || XB || XXB)) if A holds and B holds 0 to 2 cycles later
F(A) A will eventually hold

G(A U B) A holds until B holds

Table 2.1: Table illustrating a few example LTL expressions and their associated meaning.
This is of course incomplete, but it contains most of the elements that we will be focusing on
expressing in our high-level hardware languages throughout this thesis. G(...) describes a
relation that always holds, X... is the next operator, which describes an event that happens
with a 1 cycle delay, F(...) describes an event which will eventually hold i.e.

hold at least once at some point in the trace, and ...U... describes an event

that will only happen until another event holds.

0
G(A -> XB)

0 01
A

!A&B

!A A&B

2
!B

Figure 2.2: Example of a conversion of an LTL expression into a deterministic Büchi automaton.
The expression being converted is a simple form of non-overlapping implication (NOI), i.e. ”A
implies B after one cycle”. The resulting automaton has two accepting states (0, 1), i.e. states
we need to terminate at in order for our expression to hold, and one dead state (2), i.e. a state
which we can not recover from. Note that every arc is only evaluated on a clock tick, and thus
moving from one state to the next requires one cycle.

become difficult to convert to synthesizable logic once we start nesting
delays and implications. The general idea is to convert an LTL expression
into a Büchi automaton [15], which is a type of automata where a state is
considered active if it can theoretically be reached an infinite number of
times. These automata can then be made deterministic, which enables their
implementation using synthesizable hardware. Some tools such as SPOT [29]
were designed explicitly for the task of translating LTL expressions into an
automaton, however, these are often very powerful and well-engineered tools
that have been actively developed for decades. Figure 2.2 shows an example
conversion of a common LTL expression pattern, known as non-overlapping
implication (NOI) [6] into a deterministic Büchi automaton [31]. This simple
case results in a relatively compact automaton, so it can be implemented quite
directly. However, more complex expressions which include variable delays
or nesting eventually and until statements can quickly lead to state explosion
or the need for non-determinism to directly express the property [18].

7



2. Background

2.2.3 SystemVerilog Assertions

SystemVerilog implements a set of temporal relations using its SVA sub-
language [1]. More specifically, this is implemented using SVA sequences
and properties. These allow for the expression of Linear Temporal Logic,
as well as other more complex temporal expressions, such as indefinite
sequences and variable delays.

Sequences Sequences encode a series of events over a number of cycles.
They generally take the form of ”A then B after n cycles”. The number of
cycles between events is called a delay, which can be either an exact number
or a range, in which case we call it a variable delay. Sequences must generally
be clocked, meaning that they will only be evaluated on the associated clock’s
ticks. Figure 2.3 shows an example of a sequence that defines a series of

sequence s;

@(posedge clock) a ##[0:2] b ##1 c;

endsequence;

Figure 2.3: Example sequence describing the following series of events: ”a holds then within
0 and 2 cycles b holds then c holds one cycle later”. This sequence is clocked using the
standard@(posedge clock) event.

events using both exact and variable delays. The operation used to create a
sequence, i.e. ##n, is called the concatenation operator.

Properties Properties encode concurrently checked predicates which can
encode relations between elements of a design [6, 1]. These relations can
be temporal, i.e. span multiple cycles. The most commonly used property
is implication (a |-> b). Properties such as implication are defined as an
antecedent implying a consequent. The antecedent can be any sequence, but
it cannot be another property, while the consequent can be any property.
This means that we can’t express something like property |-> property,
but we can express sequence |-> property. Properties can also be disabled
given a certain condition, meaning that they are only checked if the disable
condition doesn’t hold. Figure 2.4 shows an example of a property which is
defined using a sequence and another property.

assert property (@(posedge clock)

disable iff (reset)

a ##1 b |=> (c |-> d)

);

Figure 2.4: Example of a property assertion that is disabled while the design is being reset. This
assertion checks that if b happens one cycle after a, then one cycle later if c happens, d should
happen. This can be expressed as G((a & Xb) -> X(c -> d)) in LTL.

8



2.2. SystemVerilog

Always vs. Initial Properties SVA properties can be expressed using tempo-
ral modifiers [6]. These allow the user to define how and when their property
is expected to hold. Two commonly used modifiers are always, which is
equivalent to the G(...) LTL function and expresses that a property should
hold in every cycle in order to be valid, and initial, which expresses that
a property need only hold in the first cycle in which it can terminate to be
valid. Figure 2.5 shows an example of a property expressed using the always

always assert property (@(posedge clock)

disable iff (reset)

a |=> b

);

Figure 2.5: Example of an always property. This will only hold if a implies b after one cycle for
every cycle in our simulation.

modifier. In simulation this need only hold for the duration of the simulation
to be correct. In model checking this encodes a safety property [19] for our
design. Figure 2.6 shows an example of a property expressed using the

initial assert property (@(posedge clock)

disable iff (reset)

a |=> b

);

Figure 2.6: Example of an initial property. This will only hold if a implies b after one cycle in
the first two cycles after our design is reset, i.e. once our property is enabled.

initial modifier. This property only needs to hold in the first two valid
cycles of our simulation in order for the assertion to hold. By default SVA
assumes that we are using always properties [6].

Using a combination of both properties and sequences, one can express
complex timing relations in the form of the design’s specification. Given the
strict timing constraints that generally exist in hardware, these expressions are
vital for correctly describing a design’s behavioral and structural specification.
Unfortunately, the complexity of implementing these temporal semantics in a
general form has led to SVA properties and sequences only being supported
in a small set of mostly commercial simulators. One of the goals of this
work is to expand the accessibility of these vital semantics by lowering
them to a form that can be understood by anything that can understand
basic Verilog, thus closing the gap in the verification capabilities of both
open-source simulators and high-level hardware generators.

9



2. Background

2.3 Formal Verification

The verification methods described in section 2.1 are considered to be dy-
namic, as they rely on simulating the DUT in order to verify it. Another
approach one could take would be to statically reason about the design
through the use of mathematical modeling and formal methods.

2.3.1 Boolean Satisfiability and SMT

The basis of our formal methodology is the boolean satisfiability problem
(SAT) [51]. The problem is defined as follows:

Given a formula F(x0, x1, ..., xn) with xi ∈ 0, 1 , does there exist an
assignment to these variables such that F evaluates to 1?

We say that a formula of this sort is satisfiable if we can find such an
assignment, otherwise it is said to be unsatisfiable. This problem is known
to be NP-Complete [23], however, it can still be solved quickly in many
cases using smart heuristics. Tools that solve this problem are called SAT
Solvers. We can extend the scope of this problem by including non-boolean
theories, e.g. integer or real number theories. These expanded problems are
called Satisfiability Modulo Theories (SMT) [13] and are the basis of many
formal methods used in practice today. In the particular case of hardware
verification, we focus on the bitvector theory, which encodes fixed-width
integers. Tools that are capable of solving this problem are called SMT solvers,
such as Z3 [25], CVC5 [11], or Boolector [53]. Generally speaking, the type
of logic used in these formulas is called First-Order Logic [36]. In brief, this
is a form of logic that expresses quantified variables, i.e. variables that can
reasoned about using quantifiers such as ”there exists”(∃) or ”for all”(∀), over
non-logical objects, i.e. values within certain theories. This is in contrast to
higher-order logics [69], such as temporal logic [31], which require the use of
stronger semantics to express their formulae.

2.3.2 Bounded Model Checking

With this tool in hand, we can perform Bounded Model Checking [21], where
we encode our designs, along with a specification in the form of assertions
and assumptions, as first-order logic which is then given to an SMT (or SAT)
solver to check whether or not said specification can be violated.

Verifying Combinatorial Designs Combinatorial logic can be directly mapped
to an SMT formula. To do so, we encode our design as the conjunction of all
of its constraints, i.e. variable definitions, and the inverse of all its assertions.

10
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We take the inverse of the assertions because we want to detect if any as-
signments to our inputs can violate the assertions [44]. Figure 2.7 illustrates
how a simple design that increments its input can be converted into an SMT
formula.

class AddOne extends Module {

val a = IO(Input(UInt(32.W)))

val b = a + 1.U

assert(b > a)

}

// Becomes

(and (equal b (add a 1)) // define b

(not (gt b a)) // Look for a couterexample to this assertion

)

Figure 2.7: Example, taken from Kevin Laeufer’s guest lecture on formal verification [44],
encoding of a basic combinatorial circuit which increments a given input and checks that the
incremented version is always bigger than the original input. Given the fixed-width nature of the
input, this should fail when a == 232 − 1, after which b will be 0 and the assertion will fail. An
SMT solver can very easily find this case.

Verifying Sequential Designs Sequential designs require additional work
to be converted into an SMT formula, as they represent state can evolve
over time. In this case we need some sort of abstraction to model this time-
reliant behavior. A common way to do this is to create what is called a
state-transition system [21]. The idea is to model the design using states,
which represent a set of values for all of the stateful elements in our system,
and transitions, which represent how these elements can evolve across a
single time-step, which for hardware is a clock cycle. Once this conversion
to a state-transition system is complete, we no longer need an explicit clock
expression, as clock ticks become implicit in the transition arcs of the system.
Figure 2.8 illustrates this abstraction through the conversion of a sequential
design into a state-transition system. In practice, obtaining such a state-
transition system requires having a bound on the number of cycles we are
willing to unroll our design for. The goal of Bounded Model Checking [14] is
to find if there exists a set of assignments to our inputs that create a path in
the state-transition system which can lead to a bad state, i.e. a state which
contradicts an assertion in our design. In practice, this is modeled using
symbolic states, which encode the entire system as an initial state I and a
transition function Next which represents how a state evolves across a single
cycle [44].
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    class MyCounter extends Module {

        val en = IO(Input(Bool()))

        val count = RegInit(0.U(32.W))

        when(en && count === 22.U) { count := 0.U }

        when(en && count =/= 22.U) { count := count + 1.U }

        assert(count =/= 10.U)

    }

en = 0
count = 0

en = 1
count = 0

en = 0
count = 1

en = ?
count = 10 ...

Figure 2.8: Example conversion from a sequential design that implements a counter which is
reset when 22 is reached and its associated state-transition system. The goal for a checker here
is to find if there exists a set of states which creates a path from our initial state to a state that
violates the assertion.

2.3.3 The BTOR2 Format and BTORMC

BTOR2 [53] is a format designed to allow for the quick prototyping of model
checkers for use in various Bounded Model Checking competitions. The
main use of this format reduce the overhead of creating model checkers for
hardware. The format thus supports the explicit definition of state-transition
systems, which are needed to encore constructs like memories or registers. A
state-transition system represents the model as a group of states containing
the possible value combinations that each register can take across multiple
cycles. In formats such as SMTLib [12], this involves manually unrolling
the circuit across several cycles to simulate the behavior of registers using
only combinatorial logic. In btor2, however, we can express this simply
by declaring a state and a next arc for each register in our design, thus
explicitly modeling the state-transition system.

The format itself is a declarative format that encodes models at the level of
SMT logic. Another peculiarity of this format is that it uses ordered unique
identifiers, often line numbers, to reference operations. Figure 2.9 shows an
example of how this format is used to express a module that takes an input
and adds 1 to it. The line numbers on the left side of each line represent the
unique identifiers declared for each line. These must be in increasing order
but are otherwise arbitrary. These identifiers are then used to reference that
operation in a future line.

BTOR2 is supported by many tools, but I mainly use btormc [53] in this
work, which is a Bounded Model Checker running on the boolector SMT
solver, which is optimized for solving in the bitvector and array theories.
This format is ideal for encoding hardware models as it allows using solvers
specialized for theories that are relevant for hardware model checking, and
the format itself allows for a straightforward encoding of concepts such as
registers and memories. Table 2.2 shows an overview of the btor2 format,
focusing on the instructions that are supported in the solutions proposed
in this work. These leave out any instructions specific to modeling and
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Instruction Description
<lid> sort <type> <width> Declares a type
<lid> input <sid> <name> Declares an input
<lid> output <out> Declares an output
<lid> bad <cond> Checks the inversion of a condition
<lid> constraint <cond> Assumes a condition
<lid> zero <sid> Declares a 0 constant
<lid> one <sid> Declares a 1 constant
<lid> ones <sid> Declares a bit-string of 1s
<lid> not <sid> <cond> Negates a condition
<lid> constd <sid> <val> Declares a decimal constant
<lid> consth <sid> <val> Declares a hexadecimal constant
<lid> const <sid> <val> Declares a binary constant
<lid> state <sid> <name> Declares a stateful element
<lid> init <sid> <state> <val> Initializes a state
<lid> next <sid> <state> <next> Sets the transition logic of a state
<lid> slice <sid> <op> <w> <lb> Extracts bits [lb:lb+w] from a result
<lid> ite <sid> <cond> <t> <f> If-then-else expression
<lid> implies <sid> <lhs> <rhs> Logical implication
<lid> iff <sid> <lhs> <rhs> If and only if expression
<lid> add/sub/mul <sid> <l> <r> Binary operation
<lid> {s,u}div <sid> <l> <r> Signed or unsigned division
<lid> smod <sid> <l> <r> Signed modulo
<lid> s{l,r}l <sid> <l> <r> Logical shift left/right
<lid> sra <sid> <l> <r> Arithmetic shift right
<lid> and/or/xor <sid> <l> <r> Binary logical operators
<lid> concat <sid> <l> <r> Concatenate two results
<lid> eq/neq <sid> <l> <r> Equality comparators
<lid> {s,u}gt <sid> <l> <r> Signed/Unsigned l > r
<lid> {s,u}gte <sid> <l> <r> Signed/Unsigned l ≥ r
<lid> {s,u}lt <sid> <l> <r> Signed/Unsigned l < r
<lid> {s,u}lte <sid> <l> <r> Signed/Unsigned l ≤ r

Table 2.2: Short overview of the btor2 format [53]. This table contains all of the instructions
that are used in my emission pass. <lid> refers to a line identifier, which must be in increasing
order but don’t have to be consecutive. <sid> refers to a sort’s <lid>; these are used to define
the resulting type of the instruction and can be either a bitvector, which models fixed-width
integers, or an array, which models interacting with memory units. Note that btormc does not
support outputs.
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1 sort bitvector 32 ; declares a 32-bit bitvector type

2 input 1 a ; declares a 32-bit input named "a"

3 constd 1 1 ; declares a 32-bit constant of value 1

4 sort bitvector 33 ; declares a 33-bit bitvector type

5 add 4 2 1 ; performs the operation a + 1

6 slice 1 5 31 0 ; get rid of overflow bit

7 sort bitvector 1 ; declares a 1-bit bitvector type

8 ugt 7 6 2 ; (a + 1) > a ?

9 bad 8 ; assert (a + 1) > a

Figure 2.9: Example btor2 model that takes an input and adds 1 to it. This is an encoding of
the example circuit from Figure 2.7.

interacting with memories, as those are not yet supported in my formal back
end.

2.4 CIRCT : Circuit IR Compilers and Tools

This work centers around the CIRCT compiler [48], which is an open-source,
MLIR-based [47] project focused on electronic design automation (EDA)
tools. More specifically, CIRCT transforms an input source design (in a
supported hardware language called a front end) into target languages such
as SystemVerilog, Calyx, or even an internal representation for open-source
simulation directly in CIRCT. Much like any other MLIR-based tool-set,
CIRCT defines a set of dialects, which are domain-specific operations that
form their own intermediate representation (IR) that can be used together
in a single design. Through its core dialects, CIRCT defines operations that
can represent a generalization of hardware. CIRCT also defines front-end
dialects that allow for specific elements from each front end to be expressed
concisely in their own IR.

Using CIRCT, one can describe hardware in any of its front ends and have
that design converted into a generalized representation, which can then
benefit from general optimizations before outputting it to a target language
like SystemVerilog. Basically, CIRCT attempts to rethink hardware compilers
as simply an extension of a software compiler in order to exploit the vast
tooling and expertise found in the software compiler domain. MLIR [47]
is a well-suited environment to solve this problem, as it allows us to create
individual dialects to encode specificities of each front-end language, e.g.
Chisel has its own intermediary language called FIRRTL [39], so porting
Chisel to CIRCT is done by mapping FIRRTL to a dialect constructed at an
identical level of abstraction with the same operations.

14



2.4. CIRCT : Circuit IR Compilers and Tools

Chisel Python SV/VHDL

Front-ends

Elaboration .fir

CIRCT

firtoolFIRRTL

Core Dialects

hw seq comb verif ltl

sv arc

arcilatorexportVerilog

SystemVerilog Simulation

VerificationDesign

convert core to
BTOR2

.btor2 btormc

Figure 2.10: Overview of the subset of CIRCT that I am contributing to in this work. The
contributions proposed are highlighted in green. I generally focus on the Chisel front end to
illustrate my work, so this figure mostly illustrates that flow. Chisel is lowered to a .fir file in the
FIRRTL IR, before it is handed to firtool, which is a tool capable of converting FIRRTL into
its MLIR dialect. After that, the firrtl dialect is lowered into the core dialects using a mixture
of hw, seq, comb, verif, and ltl dialects. The contributions of this thesis enable the ltl

and verif dialects to be lowered to the core design dialects, thus supporting their broader use in
CIRCT’s target languages. This can then be exported to many targets including SystemVerilog,
arcilator (for simulation), and, with this work, btor2.

2.4.1 Hardware Dialects

CIRCT defines a large set of dialects that are specific to hardware, however,
in this work I only focus on a small subset of those dialects, called the core
dialects. The core dialects function as a generalized representation of digital
hardware, and they can be grouped into design dialects and verification
dialects. Figure 2.10 shows an overview of the parts of CIRCT relevant to
this thesis.
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module {

hw.module @ex(in %a : i32, out inc : i33) {

%c1_i32 = hw.constant 1 : i32

%1 = comb.add bin %a, %c1_i32 : i33

hw.output %1 : i33

}

}

Figure 2.11: Example design that takes an input and increments it by 1 before outputting it.
Here, a 32-bit constant of value 1 is created, which is then added to the input a. This yields a
33-bit result, as addition always requires 1 extra bit to avoid overflows. The result of this addition
is then set as our output using hw.output

Core Design Dialects The main part of the core dialects is the design
dialects. These are used to express a digital hardware design in an RTL form.
This category loosely contains the following dialects:

• hw: This is generally used to define generic hardware elements out-
side of any sort of logic. This includes defining a hardware module
and its interface using the hw.module and hw.output operations and
creating connections within the module itself using the hw.wire and
hw.constant operations. This dialect also defines important types
and methods that allow us to gain information about various hard-
ware elements in the compiler, most notably via the hw::getBitWidth

function.

• seq: This is used to defined sequential design elements, such as clocks
using the seq.to clock operation, or to declare registers using the
seq.firreg and seq.compreg operations.

• comb: This is used to define combinatorial logic elements, such as
binary operations like comb.add and comb.and, comparator opera-
tions such as comb.icmp, or binary manipulation operations such as
comb.concat and comb.replicate.

Using these dialects, one can model basically any digital hardware design.
Figure 2.11 shows an example of a simple incrementing design that is ex-
pressed using only elements from the core design dialects. Note that MLIR
is generally in Single-Static-Assignment (SSA) form [47], and thus all lines
need to be stored as new results in SSA result values.

Core Verification Dialects CIRCT also recently added core dialects to ex-
press constructs that are specifically for verification purposes. For this, there
two main dialects:
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• verif: This dialect allows us to express constructs used to interact with a
design for the sake of verifying it. This includes defining a specification
for the design using verif.assert, verif.assume, or verif.cover

operations, as well as to express higher level constructs used to perform
other verification tasks such as the verif.has been reset operation,
which models a register that keeps track of whether or not the DUT
has been initialized yet.

• ltl: This dialect is specifically used to model SystemVerilog Asser-
tion (SVA)-like temporal expressions [6], which are extremely use-
ful for hardware verification, as they allow us to express relations
across multiple clock cycles. The capabilities of this dialect aim to
encode a small subset of SVA properties, using operations such as
ltl.implication, ltl.concat, or ltl.delay. It also allows for addi-
tional temporal constraints to be added to assertions, e.g. using the
ltl.clock or ltl.disable operations which associate an assertion to
a clock and disable it under certain conditions, respectively.

These two dialects are at the core of the work in this thesis, as they strongly
rely on the use of the poorly supported SVA property and sequence sub-
language of SystemVerilog to output their higher-order logic. My goal in this
work is to find an encoding for this higher-order logic as something that can
be used for Bounded Model Checking.
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Chapter 3

Formal Back End for CIRCT

One of the main methods used in Hardware Verification to maximize the
reliability of a design is to use formal methods to check the design against
a specification. In practice, this is done using Bounded Model Checking
(BMC) [14]. However, this is currently under-supported outside of a select
number of commercial Electronic Design Automation (EDA) tools; BMC is
even more poorly supported for high-level languages. Generally, using this
method requires a translation of a design into a format that can be understood
by SMT-based BMC tools such as btormc [53]. My goal in this work is to
enable BMC directly in open-source through the CIRCT compiler [48], which
benefits a large amount of front ends simultaneously instead of merely a
single language. This is done by introducing a formal back-end into CIRCT,
i.e. a new target format that can be used specifically for BMC. The specific
target that I chose to target is btor2 as it is particularly well-suited for
expressing state-transition systems. I illustrate the complete workflow using
Chisel as an input language, however, the formal back end I developed works
with any of CIRCT’s front-end languages. This chapter discusses how model
checking is enabled through my btor2 back end, which is now part of CIRCT.

3.1 Formal Compilation Flow

We begin by breaking down the general steps needed to go from a Chisel
design to a Bounded Model Checking result.

3.1.1 Simple Example

We start with a simple timer circuit written in Chisel, shown in Figure 3.1.
This example is of a 32-bit counter that is reset when it reaches 22. This
design also contains an assertion which describes a property we expect our
design to have, in this case that it never reaches the value 10. With the
conversion pass I added to CIRCT, this property will be able to be checked
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automatically using BMC [44]. Figure 3.2 shows an overview of how a

class Counter extends Module {

val count = RegInit(0.U(32.W))

when(count === 22.U) { count := 0.U }

when(count =/= 22.U) { count := count + 1.U }

assert(count =/= 10.U)

}

Figure 3.1: This design models a 32-bit counter that has a reset value of 0, and can be
incremented up until 22 before being reset again. The assertion in this design can be checked
automatically using the BMC, thanks to the emission pass I added to CIRCT.

Chisel design maps to btor2. In this illustration, the register maps to a state
declaration and an initialization. Note that in reality RegInit in Chisel sets
a reset value and not an initial value for verification, i.e. a power on value,
this was simplified for illustrative purposes. The remainder of this chapter
will detail how I constructed this lowering in the CIRCT compiler and the
various steps required to reach the final btor2 description.

1 sort bitvector 32
2 state 1 count
3 zero 1
4 init 1 2 3

5 sort bitvector 1
6 constd 1 22
7 eq 5 2 6
8 ite 1 7 3 2

8 neq 5 2 6
9 ite 1 7 3 2
10 one 1
11 sort bitvector 33
12 add 11 2 10
13 slice 1 12 31 0 
14 ite 1 8 13 8
15 next 1 2 14

16 constd 1 10
17 neq 5 2 16
18 not 5 17
19 bad 18

class Counter extends Module {

    val count = RegInit(0.U(32.W))

    when(count === 22.U) { count := 0.U }

    when(count =/= 22.U) { count := count + 1.U }

    assert(count =/= 10.U)

}

Figure 3.2: Overview of my compilation goal. This illustrates how the various parts of a Chisel
design are mapped to btor2. Note that the conversion in this figure is a simplification for
illustrative purposes and the final conversion contains some additional details.
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3.1.2 Chisel Elaboration

The first step in our compilation flow is extracting the CHIRRTL representa-
tion [39], a high level form of FIRRTL, from our design. This step is called
Chisel elaboration, as Chisel is in reality a library in Scala that is used to
generate CHIRRTL using a special emission function called emitChirrtl.
This can then be mapped to the firrtl dialect in the CIRCT compiler [48].
CHIRRTL represents the highest-level form of FIRRTL, one which closely
resembles the input Chisel source. This representation can then be converted
into MLIR using firtool and the FIRRTL dialect. The goal of this step is
to create an MLIR-based entry point into the CIRCT compiler itself, and to
do some Chisel-specific lowerings such as generate implicit clock and reset
signals.

3.1.3 Compiling FIRRTL to the Core Dialects

The firrtl dialect is then lowered into CIRCT’s core dialects. These are
used as a generalized representation of hardware, and are a conversion point
for many of CIRCT’s front ends where general optimizations can take place.
Figure 3.3 shows the core dialect representation generated for our example.
The MLIR code itself is a lowering of all of Chisel’s high-level constructs to a
more bare-bones representation of hardware.

3.1.4 Compiling the Core Dialects to BTOR2

Once the core dialect representation has been generated, we can move on
to my contribution to this flow — the btor2 emission. This is explored in
greater detail in Section 3.2, but the general idea is to convert our circuit into
a state-transition system and encode it in the btor2 format. The core dialects
express designs using semantics that closely match the expression semantics
of the bitvector logic in SMTLib [12]. The main work is thus in encoding
registers as a state-transition system, which can be done by emitting state

and next instructions for each register.

3.1.5 Checking the BTOR2 Model

The ultimate goal of this conversion is to perform Bounded Model Checking
on our design, as presented in Section 2.3. This is done using btormc [53],
which can take our newly obtained btor2 description as input along with
a cycle-bound used to perform Bounded Model Checking. The result will
tell us whether our model is satisfiable, i.e. our assertion can be violated,
in which case it will give us a counter-example, or unsatisfiable, i.e. our
design meets the given specification. Figure 3.4 shows the result of running
our example model through btormc. The result we obtain is SAT, meaning
satisfiable. A satisfiable result is accompanied by a counterexample, which

21



3. Formal Back End for CIRCT

module {

hw.module @Counter(in %clock : !seq.clock, in %reset : i1) {

%c1_i32 = hw.constant 1 : i32

%c10_i32 = hw.constant 10 : i32

%c22_i32 = hw.constant 22 : i32

%true = hw.constant true

%c0_i32 = hw.constant 0 : i32

%0 = seq.from_clock %clock

%count = seq.firreg %3 clock %clock

reset sync %reset, %c0_i32 : i32

%1 = comb.icmp bin eq %count, %c22_i32 : i32

%2 = comb.add %count, %c1_i32 : i32

%3 = comb.mux bin %1, %c0_i32, %2 : i32

%4 = comb.xor bin %reset, %true : i1

%5 = comb.icmp bin ne %count, %c10_i32 : i32

%6 = comb.and bin %4, %5 : i1

sv.always posedge %0 {

sv.assert %6

}

}

}

Figure 3.3: Result from compiling the example design from Figure 3.1 into an MLIR representation
using the core dialects.

can be used to prove how the assertion can be violated. This counterexample
is in the form of a trace and shows us how our counter can reach the illegal
value of 10.

sat

b0

#0

0 00000000000000000000000000000000 count@0

0 1 reset@0

[...]

0 00000000000000000000000000001010 count@10

0 0 reset@10

.

Figure 3.4: Abbreviated result from running our btor2 model through btormc. This result shows
us a counterexample where the value of each signal is given for each cycle and the assertion is
violated in cycle 10 when the counter is equal to 10.
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3.2 Compiling Hardware to First-Order Logic

In this section, we discuss the details of my btor2 back end and how each
individual conversion is performed.

3.2.1 Combinatorial Circuits

The first step to having a complete encoding of hardware in btor2 is to start
with encoding purely combinatorial circuits. The goal in Bounded Model
Checking is to find out whether or not the given assertions hold in every
possible case. To do so we want to find a set of assignments to variables
in a given formula that allows the inverse of the assertion to hold. If this
assignments exists, then we say that the formula is satisfiable and return
the assignments as a counterexample, otherwise we say that the formula
is unsatisfiable. The main idea is to encode a given circuit containing an
assertion as the conjunction between all of the constraints, i.e. the definition
of wires and components, and the inverse of the assertion as a single SMT
formula that can then be handed off to an SMT-solver such as boolector [53].

MLIR to BTOR2 Conversions Let us now detail how each type of combina-
torial MLIR operation is converted to btor2. For combinatorial circuits, the
dialects that need to be considered are the hw, comb, seq, and sv dialects.

• Ports: Inputs and outputs to a module are not explicitly defined
using MLIR operations but are rather defined as arguments to the
hw::ModuleOp operation. These are the first constructs that we need to
convert. We thus extract the ports from the module, then use the infor-
mation stored in the obtained hw::PortInfo to retrieve their bit-width,
name, and port direction. When it comes to model checking, outputs
are omitted as they are unnecessary. The final emission for ports would
yield the conversion in Figure 3.5. As explained in Section 2.3, clocks

1 sort bitvec 1
2 input 1 reset
3 input 1 in

hw.module @Ex(in %clock : !seq.clock, in %reset : i1,

        in %in : i1, out %out : i32)

Figure 3.5: Illustration of how modules are lowered to btor2.

are ignored as our system is expressed in terms of states and transitions,
and not in terms of when those transitions occur.

• Constants: The constant’s value and bit-width are extracted from
the hw::ConstantOp, and used to generate the equivalent constant
declaration in btor2. A new sort is generated only if a bitvector of that
width does has not yet been declared. This yields the conversion in
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Figure 3.6. Note that while btor2 supports several constant declaration

%c0_i32 = hw.constant 0 : i32
1 sort bitvec 32
2 constd 1 0

Figure 3.6: Illustration of how constants are lowered to btor2.

operations, we will exclusively use the constd operation as it supports
decimal representations and thus avoids unnecessary string formatting.

• Wires: Wires represent an intermediate connection in our design and
are often used to improve readability. These are thus treated as aliases
in our pass and don’t explicitly generate any btor2. The only subtlety
with these is that they may be nested and require iterative de-aliasing
until a non-wire operation is reached. Every time a hw::WireOp, which
defines a wire in our design, is reached in our pass, we simply store the
operation to operation mapping and use it to find the first operation
mapped to a concrete line identifier when being used as an operand
in another operation. In practice this means that when we emit btor2
for an operation that uses a he::WireOp as an operand, we need to
call getOpAlias(wire) and fetch the identifier of the result and not the
identifier of the wire itself.

• Binary Combinatorial Operations: These all behave the same way
and have one-to-one mappings between the comb operations and btor2

operations. We simply need to extract the width of the result and the
name of the operation to generate a valid btor2 operation. Figure 3.7
shows an example of such a lowering.

3 sort bitvec 33
4 add 3 1 2%1 = comb.add bin %0, %c1_i32 : i33

Figure 3.7: Illustration of how an addition is lowered to btor2. Note that all binary combinatorial
operations are lowered following the same pattern. Here 1 and 2, in line 4 of the btor2 result,
refer to the conversions of %0 and %c1 i32 in the input MLIR.

• Bit Extraction: The comb::ExtractOp is equivalent to the btor2 slice

operations and models the extraction of a subset of a bitvector’s bits.
The only difference is that extract only takes a low-bit as argument,
so the output slice operation always goes from the low-bit to the
bit-width minus 1. Figure 3.8 illustrates this conversion.

• Comparisons: These are a one-to-one mapping as the naming of
comb::ICmpOp comparators is identical to the ones used in btor2, apart
from the exception of non-equality which is written as ne is MLIR but
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6 slice 1 5 31 0%2 = comb.extract %1 from 0 : (i33) -> i32

Figure 3.8: Illustration of how extractions are lowered to btor2. Note that 5 in the btor2 result
refers to the conversion of %1 from the MLIR input.

as neq in btor2. This was added as a special case. Figure 3.9 illustrates
this lowering.

10 eq 1 7 8%1 = comb.icmp bin eq %count, %c22_i32 : i32

Figure 3.9: Illustration of how comparisons, e.g. equality, are lowered to btor2. Note that 7
and 8 in the btor2 result refer to the conversions of %count and %c22 i32 from the MLIR input
respectively.

• Multiplexers: These map to ite operations in btor2. This instruction
refers to an ”if then else” statement, which has similar semantics as
those used by the comb::MuxOp. We thus only need to extract the
condition, true and false results, and reorder them in the ite operation.
Figure 3.10 illustrates this lowering.

24 ite 1 18 23 16%9 = comb.mux bin %5, %8, %3 : i32

Figure 3.10: Illustration of how multiplexers are lowered to btor2. Note that 18, 23, and 16 in
the btor2 result refer to the conversions of %5, %8 and %3 from the MLIR input respectively.

• Assertions and Assumptions: These are not explicitly defined in the
core design dialects, so basic assertions and assumptions lower to their
equivalents expressed in the sv dialect. As described in Section 2.3, the
goal in BMC is to find a counterexample that violates our assertion (if
any). In order to do so, we need to convert our assertion into a bad

btor2 instruction which checks for the inverse of our original assertion
condition. Assertions are often predicated by an enable signal using
an sv::IfOp. In that case, the assertion condition is first expressed as
the consequent of an implication on the enable condition, after which it
is inverted to be used in the bad instruction. Assumptions are simply
mapped one-to-one to btor2 constraint operations. This conversion
is illustrated in Figure 3.11.
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sv.always posedge %0 {
  sv.if %en {
    sv.assert %10
  }
}

27 implies 1 3 26

28 not 1 27

29 bad 28

Figure 3.11: Illustration of how assertions are lowered to btor2. The sv.always operation in
MLIR is ignored, as we are working with state-transition systems which encode the clock implicitly.

3.2.2 Sequential Circuits

The main difference between a combinatorial circuit and a sequential one
comes from the presence of registers. This adds the necessity to generate
states and transition arcs for each register in the design. The difficulty with
this is that registers often modify their own value depending on the one they
held during the previous cycle. This means that our implementation needs
to support two additional emission details:

• Handle cyclical operands, meaning operations such as registers defined
using an operation on themselves in their next expression e.g. count :=

count + 1. Implemented naively, this would yield null identifiers as
the register would not yet be defined when defining its next expression.

• Handle back-edges in the IR to allow for a def-after-use pattern.

In order to support cyclical operands, i.e. an operation that uses itself as an
operand, we declare all registers at the beginning of the btor2 model. This is
done by pre-walking the Intermediate Representation (IR) to visit all registers
before any other operation. Once all registers have been emitted, we can do
the second pass of the IR to emit everything else. To support def-after-use
patterns, which are often present when working with registers in the core
dialects, we need to perform our second walk of the IR in a Depth-First
Search (DFS) order, meaning that we need to first emit all of an operation’s
operands before emitting the the operation itself. This ordering also allows
us to only emit operations that are actually used, as operations that are not
another’s operand will never be visited and thus won’t cause any unused
btor2 operations to be emitted.

Register Conversion In practice, registers will be converted in two phases.
First we will generate a state instruction that is used to declare the register
and give it an identifier. This is done in the pre-walk of the IR. Afterwards,
the register operation is stored in a map that associates it to its identifier, so
that at the end of the DFS walk, we can emit the next instructions, which
define how the register’s value evolves from one cycle to the next. Figure 3.12
shows an example of what a register conversion could look like. One final
subtlety that needs to be dealt with is the handling of reset values, which are
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3.2. Compiling Hardware to First-Order Logic

%count = seq.firreg %7 clock %clock 
reset sync %reset, %c0_i32 : i32

1 sort bitvec 32

2 state 1 count 

[...]

31 ite 1 3 30 24

32 next 1 2 31

Figure 3.12: Illustration of how registers are lowered to btor2. The state declaration contains a
sort and a name. The reset and next instructions are then merged into a single next value that
implements next = reset ? resetVal : nextVal.

the value given to a register when the design’s reset signal is raised. Given
that most registers are tied to a reset, we need to record a specific identifier
for the reset (assuming only one exists) to then use as a condition on the
value taken in the register’s transition arc. This is done when the module’s
arguments are visited in the beginning of the DFS pass.

Initial Values There are two types of registers in CIRCT, firreg, which is
generated by a FIRRTL lowering, and compreg, which is the more generic
register for CIRCT used by most front ends. The main difference between
these two is in how they support initial values, firreg uses a type of anno-
tation to encode them, while compreg can accept a powerOn operand which
can directly contain an initial value for the register. This is very impor-
tant for formal verification, as without an initial values, an SMT solver can
simply arbitrarily set the register’s value at cycle 0, trivially finding false
counterexamples for any design. To solve this we generate initial values for
both register types using either the powerOn values or the resetValue if no
initial value was given. We then use these values in an init statement in the
generated btor2. This conversion is illustrated in Figure 3.13.

[ ... Same as firreg ... ]

1 sort bitvec 32

2 constd 1 <pov>

3 state 1 reg

4 init 1 3 2

%reg = seq.compreg %next clock %clock 
reset %reset, %resetVal powerOn %pov : i32

Figure 3.13: Illustration of how registers initialization are lowered to btor2. Registers can be
defined using seq.firreg, which is specific to FIRRTL, or seq.compreg. Both register types
lower the same way to btor2.

Handling Asynchronous Resets The above method is specific to designs
that only use synchronous resets. In the case of asynchronous resets, the
register can be reset at any moment. The problem with this is that in btor2,
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3. Formal Back End for CIRCT

a register’s value is only ”updated” on a state transition, so it can’t be reset
arbitrarily. One solution is to generate ite statements that are conditioned
on the reset in order to select either the reset value or the current register
value on every read. This way we don’t actually need to worry about the
register being reset synchronously. For example, we can have a register %reg
declared with an asynchronous reset signal. When we then use %reg, it will
be read as reset ? %resetVal : %reg. This conversion is illustrated in
Figure 3.14.

1 sort bitvec 1

2 input 1 reset

3 sort bitvec 32

4 constd 3 <resetval>

5 constd 3 <pov>

6 state 3 reg

7 init 3 6 5

8 ite 3 2 4 6

9 constd 3 1

10 and 3 8 7

%reg = seq.compreg %next clock %clock reset %reset,
%resetVal powerOn %pov : i32
%0 = hw.constant 1 : i32
%1 = comb.and bin %reg %0 : i32

Figure 3.14: Illustration of how asynchronous registers are handled in the btor2 emission pass.
When asynchronous resets are used, the generated next instruction, which is conditioned on the
reset, is used as the register’s value instead of the register itself.

Clocks Clocks are generally ignored in my model, as we assume a single
clock design. This is often enough as many designs are globally synchronized.
There are also methods called clock-gating which allows a single clocked
design to have multiple clock behaviors by performing some logical operation
on the clock signal before connecting it to registers [57]. Explicitly handling
multiple clocks would have to be done using additional inputs and condi-
tioning transition arcs on the clock that is associated to the current register,
but this is generally ignored in my solution as it makes handling temporal
specifications more complex, and isn’t necessary for the large majority of
designs.

This addition now allows us to model arbitrary sequential circuits using our
formal back end. We can now represent registers to enable the modeling of
designs that evolve over time, unlike combinatorial designs which represent
a pure logical transformation of inputs into outputs.

3.3 Results

The output from this work is a btor2 emission pass that was up-streamed into
CIRCT [26] and is integrated into the firtool compiler for Chisel. This pass
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1 sort bitvec 1

2 input 1 reset

4 sort bitvec 28

5 constd 4 0

6 constd 1 0

7 sort bitvec 32

8 constd 7 22

9 constd 1 -1

10 sort bitvec 4

11 constd 10 -6

12 constd 7 0

13 state 7 count ; count = Reg<32>

14 eq 1 13 8

16 ite 7 14 12 13 ; count == 22 ? 0 : count

17 neq 1 13 8

19 sort bitvec 33

20 concat 19 6 13

21 constd 19 1

22 add 19 20 21 ; count + 1

23 slice 7 22 31 0 ; model behavior of chisel add (can overflow)

24 ite 7 17 23 16 ; count != 22 ? (count+1)[32..0] : `16`
25 constd 7 10

26 neq 1 13 25

28 not 1 27

29 bad 28 ; solve(!(count != 10))

30 zero 7

31 ite 7 2 30 24

32 next 7 13 31 ; count := reset ? resetval : `24`

Figure 3.15: Result from running the convert-hw-to-btor2 pass on the Chisel design expressed
in Figure 3.1. The notation ‘x‘ refers to the instruction defined with the identifier x, e.g. ‘24‘
refers to 24 ite 7 17 23 16.

can be run using circt-opt --convert-hw-to-btor2 <mlir-file>.mlir

and can convert any design expressed in CIRCT’s core dialects into a btor2

model. This model can then be given as an input to btormc to perform
Bounded Model Checking.

This pass enables a simple version of specification-based verification using
non-temporal assertions and assumptions. We can then easily formally verify
if certain purely combinatorial assertions hold for any given circuit. For
example, using this pass, we can now convert the design from Figure 3.1 into
a btor2 file yielding the result in Figure 3.15.

This automated modeling was not possible in CIRCT prior to this work. While
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3. Formal Back End for CIRCT

existing solutions were present in the Scala FIRRTL Compiler (SFC) [43] to
perform a similar conversion, this was not adapted to the newer versions
of Chisel, which rely on the far faster CIRCT compiler. Additionally, our
solution allows for the formal modeling of a design described in any of
CIRCT’s front ends, not just Chisel, which was the case with the SFC-based
solution.

Limitations This pass focuses on creating a model of the hardware design,
and it does not support any complex specifications that do not rely on syn-
thesizable logic. More specifically, this solution does not support memories,
which rely on array sorts in btor2 and a special set of instructions to inter-
act with those sorts [53]. As mentioned earlier, this also does not support
multi-clock designs, as that would add too much complexity, particularly
when trying to support temporal logic, and is rarely used in practice.

This formal back-end functions as the backbone for the rest of this work. In
the next chapter, I present how the input MLIR can be modified to allow for
the expression of temporal logic and other properties directly in our design’s
specification in a way that can be used for BMC.
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Chapter 4

Encoding Temporal Properties for
Bounded Model Checking

The previous chapter presents a formal back end that can be used to ver-
ify digital hardware designs against a specification written out as a set
of assertions. In this chapter, I focus on improving how we can express
these specifications. In particular, I introduce two custom lowerings for SVA
properties and sequences that enable the use of temporal expressions in an
assertion.

4.1 Encoding Property Assertions

As I presented in Section 2.2.3, property assertions are at the core of encoding
temporal expression in a specification. As a result, I start this chapter by
creating an encoding for the elements required to express property assertions.
In order for the encoding to work for Bounded Model Checking, I need a way
to guarantee that the SMT solver won’t simply select illegal values for all of
the registers in the design at cycle 0. To do so, I need to disable the assertions
in the design as long as the circuit has not been reset. This essentially allows
me to set an undefined state at the beginning of the model checking process.

4.1.1 The AssertProperty Statement

In our source language, Chisel, there exists a statement which directly maps to
SystemVerilog’s assert property statement, namely AssertProperty [42].
Using this statement in Chisel will cause the CIRCT compiler to generate the
MLIR code in Figure 4.1.

The generated MLIR has four operations that are not part of the traditional
synthesizable core dialect operations and thus cannot be directly used with
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%0 = seq.from_clock %clock      

%true = hw.constant true

%9 = verif.has_been_reset %0, sync %reset  

%10 = comb.xor bin %9, %true : i1          

%13 = ltl.disable %predicate if %10 : i1   

%14 = ltl.clock %13, posedge %0 : !ltl.property

verif.assert %14 : !ltl.property

AssertProperty(predicate)

Figure 4.1: Resulting MLIR generated from a single AssertProperty(predicate) statement
in Chisel. verif.has been reset keeps track of the reset being raised, ltl.disable disables
the given predicate if the reset has not yet been raised, and ltl.clock associates a clock to our
assertion.

our Bounded Model Checking back end, so we need to find a synthesizable
encoding for these concepts.

Has been reset This operation represents a 1-bit register which is set to 1
the first time the reset is active, and then remains at 1 forever. One small
detail that can be found in the verif dialect’s documentation [59] is that the
register must be set to 1 one cycle after the reset is active for the first time.
I implement this using a register (hbr) whose value is set to reset | hbr

and is used via (not (and (not reset) hbr) in the disable condition. This
allows us to keep track of the reset and make sure that we aren’t considering
the assertion in the same cycle that the circuit is being reset in. Figure 4.2
illustrates this conversion. An additional subtlety about this operation is that

%false = hw.constant false

%2 = comb.or bin %reset, %hbr : i1

%hbr = seq.compreg %2, %clock powerOn %false : i1

%9 = verif.has_been_reset %clock, sync %reset

Figure 4.2: Illustration of the lowering of a has been reset operation to core dialect operations.

it should only be read as active once the reset cycle has ended. The ”has been
reset” signal is therefore a combination of the hbr register and the current
value of the reset signal, i.e. (hbr & !reset). This guarantees that we never
consider the cycle where the reset process is still ongoing as valid.

Disable This operation disables the input predicate given a disable con-
dition. By default, this is used to disable assertions before the first reset.
Logically disabling an input is equivalent to masking its result with a 1 when
the disable condition is valid. This is implemented by converting the disable
operation into an implication with a negated condition, i.e. (implies (not

cond) input), which is equivalent to (or cond input). Figure 4.3 shows
how this conversion is performed.
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%disable = comb.or bin %cond, %input: i1%13 = ltl.disable %input if %cond : i1

Figure 4.3: Illustration of the lowering of a disable operation to core dialect operations.

Clock and Assert These two operations are handled together, as the clock
is needed to lower the assertion. Generally, CIRCT uses assertions from the
sv dialect to encode simple assertions from its front ends. Assertions from
the verif dialect are currently only used to encode property assertions [59],
so they need to be lowered into the sv dialect in my pass for these to encode
the behavior of a standard assertion. In practice, this conversion is the most
complex one to implement in CIRCT, as performing a backwards conversion
while keeping strict type safety requirements in check requires engineering
finesse — the details are available in the source code [27]. Figure 4.4 illustrates
this conversion.

%14 = ltl.clock %13, posedge %clock : !ltl.property

verif.assert %14 : !ltl.property

sv.always posedge %clock {

    sv.assert %disable, immediate

}

Figure 4.4: Illustration of how a verif.assert operation, along with its associated clock, are
lowered to core dialect operations.

With this conversion, I can now encode assertions that can be disabled using
either an arbitrary condition or the ”has been reset” signal as synthesizable
hardware, meaning that it can be used with my Bounded Model Checking
backend.

4.2 Implementing SVA Properties in CIRCT

I described how temporal expressions are traditionally encoded as first-order
logic through the use of Büchi automata in Section 2.2.2. However, this
solution is not easily implementable in a compiler, as it requires numer-
ous complex automata transformations, which require far more work to
implement than is possible in the scope of this thesis. Instead, we propose
a practical implementation of certain non-nested properties using a direct
encoding of the operation’s semantics as synthesizable hardware.

4.2.1 A Study of SVA Property Usage

To figure out what properties need to be focused on in my specialized
implementation, I looked at data gathered from a previous survey of SVA
property and sequence usage in open-source projects done at UC Berkeley.
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Additionally, I received additional SVA property and sequence usage data
through discussions with verification engineers at various companies.

Previous Work on Surveying Existing SV Designs In the scope of the
original Chisel formal project [45], a group of students looked at 11 different
designs across two open-source projects, namely the ”axi4 vip” project [66]
and the OpenHW group’s CV32E40S RISC-V IP [34], and gathered all of the
SVA properties that were used to verify them. Figure 4.5 shows the results

Design #OI #NOI #Concat

AXI 32 0 13
Alignment Buffer 10 1 2
FSM Controller 1 0 0

CPU Core 1 7 0
Decoder 1 0 0
If Stage 1 0 0

Load Store Unit 4 0 0
Prefetch Unit 2 0 0

Prefetcher 5 0 0
Sleep Unit 9 0 0

Write Buffer 8 2 0
Total 74 10 15

Figure 4.5: Results from a survey conducted across two projects: a verified implementation of
an AXI bus, and a verified implementation of a 32-bit Risc-V core. The results show that the
most commonly used properties across these two large projects were overlapping implication (OI),
non-overlapping implication (NOI), and delayed concatenation (concat).

from the survey. These results count the number of properties found in two
large projects and separate them by type. The figure shows the number of
overlapping implications, non-overlapping implications, and concatenations
used in the properties found across these two projects. These results show
that the most important properties to focus on are overlapping implication
and non-overlapping implication. Concatenation seems useful but mostly
focused around a single design, so the two first property types should be
prioritized.

SVA Property Usage at Intel After presenting this work at the SLICE
Lab retreat to a set of industry sponsors, researchers from Intel contacted
us to learn more about our research. Through this discussion, I was able
to get information about the properties they use in their designs. None
of the temporal properties they mentioned are currently supported by the
popular open-source Verilog simulator Verilator [60], something which could
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be solved by my lowering. Figure 4.6 shows us the most common types of

Property Description Verilator/My Support

a |-> b Simple implication Yes/Yes
a ##n b Constant delay concatenation No/Yes

a ##2 b ##[1:5] c Variable delay concatenation No/No
(disable iff (d)) ... Custom disabling of properties No/Yes

Figure 4.6: Usage information gathered from engineers at Intel. This shows us the most important
properties used in their Chisel development team. This table also illustrates how little support
these properties receive in the open-source simulator Verilator.

properties used by researchers writing Chisel at Intel Labs. This team focuses
on using open-source tools for their development, so they cannot use many
of the commercial properties that could be useful to them. This information
shows us that implications as well as delayed concatenations are important
properties to focus on lowering to a form that any tool that understands basic
Verilog could understand. This would allow both open-source simulators
and our formal back-end to benefit from SVA properties.

Discussions with Other Groups Discussions with engineers at both SiFive
and the FZI research group in Karlsruhe lead to a very similar conclusion.
The most commonly used SVA properties at both of these companies were
non-overlapping implications and constant delay concatenations. This in-
formation, along with the results shown in the two previous paragraphs,
shows that we should focus our implementation on those two constructs,
i.e. non-overlapping implication and concatenation with a constant delay.
Note that overlapping implication is supported using a simply a logical
implication, so it is trivial to support.

4.2.2 Implementing Non-Overlapping Implication

Our previous study concluded that the most beneficial lowering to implement
is non-overlapping implication (NOI). As presented earlier, NOI, in contrast to
overlapping implication, encodes a logical implication over multiple cycles [1].
Figure 4.7 show how this is represented in SVA.

input clock, a, b;

integer n;

assert property (@(posedge clock) a ##n true |-> b) // SVA

G(a XX..[n]X1 -> b) // LTL

Figure 4.7: Example of a non-overlapping implication property and its equivalent LTL formula.
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For a single cycle delay, this can be written in SystemVerilog, as a |=> b.
In any case a is called the antecedent of the implication, and b would be
the consequent. In order to encode this directly, I designed a lowering that
allows monitoring the property using sythesizable logic, rather than an
automaton. Using this lowering, I can encode the property in a form that can
be expressed in the core design dialects and is supported by all of CIRCT’s
targets, including my formal back end. To perform this lowering, I create
two sets of registers:

• A register that counts the number of cycles elapsed since the last time
the property was enabled.

• A pipeline of registers that delay the antecedent for the number of
cycles required by delay, i.e. n in the above example.

Once we have these two sets of registers in place, we can simply modify our
final assertion to check that we are in one of three cases, either our delay
register is below n, our final register in the antecedent delay pipeline implies
our consequent, or that we are currently in a reset cycle. Figure 4.8 illustrates
how this lowering is done in practice. A diagram of the circuit generated by
this lowering can be found in Figure 4.9. [ht]

a ##n true |-> b

// becomes

reg delay, a_0, ..., a_n;

delay' = disable ? 0 : delay + 1

a_0' = a;

a_1' = a_0;

// ...

a_n' = a_(n-1)

assert (delay < n) || (a_n -> b) || disable

Figure 4.8: Pseudo-code illustrating how my lowering implements non-overlapping implication
with a delay of n cycles.

The three cases in the assertion are justified as follows:

• delay < n: if the delay has not yet been reached then the value of the
last register in the pipeline is ”garbage”, i.e. undefined, as it theoreti-
cally stores information from before the property was last enabled. We
need this condition to make sure that the assertion is disabled as long
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a ##n |-> b

a D Q D Q ... D Q

a_0 a_1 a_n

D Q

delay

+

1

m
u
x

disable

0

or

l<r

n

l

r

disable
assert

orb

not

Figure 4.9: Diagram illustrating the circuit generated by lowering non-overlapping implication
with a delay of n cycles using my solution. The labeled squares represent registers, each of
which is clocked using the clock associated to the property using the ltl.clock. The antecedent
registers do not need to be reset, as they are delayed versions of the antecedent, which is expected
to be reset externally. The delay register is reset using the disable condition associated to the
property.

as we haven’t waited long enough to evaluate it.

• a n -> b: this simply encodes our core condition, i.e. that a implies b
n cycles later, so a delayed by n cycles should imply b.

• disable: if the disable condition holds, then the assertion should be
disabled.

Concrete NOI Lowering Now that the main idea of the implementation
was presented, I describe the actual lowering done in MLIR. When an NOI is
written in Chisel, it generates a set of particular intrinsics in FIRRTL which
then get lowered to three operations in MLIR [42]. This is a result of NOI
being encoded as antecedent ##n ‘true‘ |-> consequent.

a |=> b

// becomes

%true = hw.constant true

%1 = ltl.delay %true, 1, 0 : i1

%2 = ltl.concat %a, %1 : i1, !ltl.sequence

%3 = ltl.implication %2, %b : !ltl.sequence, i1

Figure 4.10: Encoding of a non-overlapping implication expression in MLIR. a |=> b is encoded
as a ##1 true |-> b.
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Name Pattern Inputs
Non-overlapping implication (NOI) a ##n true |-> b a, b ∈ {0, 1}

Overlapping implication (OI) a |-> b a, b ∈ {0, 1}
Concatenation a ##n b ##m c a, b, c ∈ {0, 1}

Table 4.1: Summary of the patterns supported by my lowering. Concatenation can have an
arbitrary number of elements in its sequence.

In order to correctly implement my direct lowering, I need to identify this
particular pattern in MLIR. Given that an individual general lowering of
each operation may not compose correctly, I opt for a more pattern-specific
approach, where the NOI pattern is handled differently than the OI pattern,
which differs from the concatenation pattern. Table 4.1 summarizes the types
of patterns that are supported in my lowering.

In the NOI case, I extract the information needed from the above three
operations, i.e. the Value of the antecedent, which must evaluate to a boolean,
the Value of the consequent, which must also evaluate to a boolean, and the
length of the delay, which can be any positive integer. With this information
I can implement the method presented above, yielding the conversion in
Figure 4.11. As we can see, my lowering generated two new registers, a

%true = hw.constant true

%1 = ltl.delay %true, 1, 0 : i1

%2 = ltl.concat %a, %1 : i1, !ltl.sequence

%3 = ltl.implication %2, %b : !ltl.sequence, i1

%false = hw.constant false

%true = hw.constant true

%5 = comb.add %delay_, %true : i1

%6 = comb.icmp bin eq %delay_, %true : i1

%7 = comb.mux %6, %true, %5 : i1

%delay_ = seq.compreg %7, %clock reset %4, %false

powerOn %false : i1  

%antecedent_0 = seq.compreg %a, %clock reset %4, %false

powerOn %false : i1

%8 = comb.icmp bin ult %delay_, %true : i1

%9 = comb.xor %antecedent_0, %true : i1

%10 = comb.or %9, %b : i1

%11 = comb.or %8, %10 : i1

Figure 4.11: Illustration of the lowering of a non-overlapping implication pattern to core dialect
operations. Note that in this pattern, the ltl.concat operation is only useful for obtaining the
antecedent.

delay register which counts the number of cycles elapsed since the assertion
was last disabled, and a antecedent 0 register, which delays the antecedent
by one cycle. The reset signal used for these new registers is the disable
condition of the assertion, as disabling the assertion interrupts the evaluation
of a sequence, making any reasoning about it incoherent (and thus our entire
evaluation of the property should be reset).
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Supporting Concatenation Concatenation is the most basic type of sequence
and is used to expresses a series of signals holding across several cycles.
Taking a look at the NOI lowering, we can see that concatenation follows a
similar implementation pattern. Rather than only delaying the antecedent,
I delay each element in the sequence by the number of cycles that follow
it in said sequence. This means that for a sequence a ##n0 a0 ##n1 a1 ...

##nm am, a is lowered to a pipeline of n0 + n1 + ... + nm registers, a0 is
lowered to a pipeline of n1 + ... + nm registers, etc... The final value of the
concatenation is the conjunction of all of the last registers in the pipelines.
The concatenation should be disabled as long as ∑ m

i=0ni cycles have not
elapsed.

a ##n0 a0 ##n1 a1 ... ##nM aM

// becomes

D = sum(i in 0 until M)(ni) // sum of all delays

reg delay;

reg a_0, ..., a_last; // D registers

reg a0_0, ..., a0_last; // (D - M) registers

reg a1_0, ..., a1_last; // (D - M - (M-1)) registers

//...

reg am_minus1_last;

delay' = disable ? 0 : delay + 1;

a_0' = a;

a_1' = a_0;

//...

a_last' = a_(D-1);

a0_0' = a_0;

a0_1' = a0_0;

//...

a0_last' = a0_(D - m);

//...

am_minus1_last' = am-1;

assert (delay < D) || a_last && and(i : 0..m)(ai_last) && am || disable

Figure 4.12: Implementation of a general SVA sequence using only exact delays.
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a ##n0 a0 ##n1 a1 ... ##nm am

a D Q D Q D Q

a_0 a_1 a_last

D Q

delay
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1

m
u
x

disable

0

or

l<r

D

l

r

disable
assert

a0 D Q D Q D Q

a0_0 a0_1 a0_2

D Q D Q

a_2 a_3

...

...

D Q

a0_last

...

D Q

am_minus1_last

a1 D Q D Q

a1_0 a1_1

D Q
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...

am_minus1

and...

am

Figure 4.13: Diagram illustrating the circuit generated by lowering a generalized concatenation
using my solution. As with the NOI lowering, only the delay register requires being reset using
the disable condition associated to the property.

As we can see in Figures 4.12 and 4.13, even simple sequences start to generate
a significant amount of hardware, which highlights the complexity of this
translation task.

With these two contributions, I now support the most commonly used SVA
properties identified in the survey. This pass is integrated into the firtool

--botr2 compilation flow before the btor2 emission. In general this pass will
be the final pass in the core dialects during compilation, as it is only needed
to add verification support for CIRCT’s target formats. This pass can also be
used manually using circt-opt --lower-ltl-to-core <design>.mlir.
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Chapter 5

Verifying the Compiler Passes

Two new compiler passes are introduced in this work, which need to be
verified in order guarantee their correctness. To do so, I implemented a
logical equivalence checker to verify the formal back end and a cycle-bound
exhaustive tester to verify the SVA property lowerings. This chapter describes
both of those testing techniques as well as the results of the test campaign.

5.1 Verifying the BTOR2 Emission

We start by verifying the core of my solution, which is the btor2 back end
in CIRCT. In this case, I am able to compare my solution to the formal back
end that was implemented in the Scala FIRRTL Compiler (SFC). This allows
us to take a differential approach to our verification. I start by tackling the
design of an oracle that can be used to tell us whether a conversion is correct
or not. Given that I am comparing two formal descriptions of a circuit, I can
use formal equivalence checking [52] as an oracle. To do so, I create what is
called a ”miter” circuit [17] from the two input designs. A miter circuit is a
single design containing both of the input designs concatenated to each other
and sharing a single set of identical input and output ports. Then the two
outputs are removed and replaced with an equivalence oracle in the form
of an assertion that both outputs are equal. Figure 5.1 shows an example
of what this process may look like for two equivalent designs. The result
is checked using btormc, and if btormc finds a set of inputs that leads to a
disagreement in the outputs we have found a bug in our design. Figure 5.2
shows an overview of the structure of the formal equivalence checker.

For the test-case generation problem, I ran this on a handful of designs
that contained only elements supported by both the CIRCT and SFC formal
back ends. In doing, I found that the two back ends handle uninitialized
registers quite differently [65]. Given that this is considered undefined
behavior, neither of the two approaches are technically incorrect. As a
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1 sort bitvector 32

2 input 1 a

3 sort bitvector 33

4 add 3 2 2

5 output 4

++merge with++

1 sort bitvector 32

2 input 1 a

3 constd 1 2

4 sort bitvector 33

5 mul 4 2 3

6 output 5

==becomes==

1 sort bitvector 32

2 input 1 a

3 sort bitvector 33

4 add 3 2 2

5 sort bitvector 32

6 constd 5 2

7 sort bitvector 33

8 mul 7 2 6

9 sort bitvector 1

10 neq 9 4 8

11 bad 10

Figure 5.1: Example of two equivalent circuits being merged into a miter circuit. A condition for
creating a miter circuit is that both designs share the exact same interface [17]. Here, I take the
two first designs and merge them by removing the second instance of the inputs and converting
the outputs into an equality assertion. This can then be given to btormc to check for equivalence.
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input DUT

Logical Equivalence Checker

CIRCT

sfc.btor2

SFC

circt.btor2

Circuit Miter

Merge

btormc

Bug

sat?

1 sort bitvector 32
2 input 1 a
...
12 and 1 11 10
13 output 12

1 sort bitvector 32
2 input 1 a
...
11 and 1 10 9
..
21 and 1 20 19
22 sort bitvector 1
23 neq 22 21 11
24 bad 23

1 sort bitvector 32
2 input 1 a
...
11 and 1 10 9
12 output 11

Figure 5.2: Overview of the logical equivalence checker built to verify the formal back end. This
functions by taking a certain design as input (usually as a FIRRTL of Chisel file), then converting
it into a btor2 file using both the original Scala FIRRTL Compiler (SFC) and my formal back
end in the CIRCT compiler using firtool --btor2. The instructions highlighted in blue show
how the inputs are merged, and the instructions highlighted in green show how the outputs are
handled. The resulting two btor2 circuits are merged into a single miter circuit where the two
outputs are compared in an assertion to verify their equivalence. This final miter btor2 file is
then checked using btormc. If the result is satisfiable, then we have found a bug in our design.
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workaround, I implemented a post-processing compiler pass that gives all
state elements an initial value which is only used for verification purposes
and doesn’t modify the design itself. This allows me to avoid having to deal
with undefined behavior and leads to both back ends behaving equivalently
on small sequential and combinatorial designs that do not use memories.
Larger designs such as those from the RISC-V mini project1 were planned to
be verified with my solution, however this was not completed due to time
constraints and is left for future work.

5.1.1 Creating a Miter Circuit

In order to create a miter circuit, I need to be able to easily manipulate btor2

descriptions. To do so, we create a basic btor2 parser that gives us small
amounts of control over the program, such as moving a set of instructions up
and down the program, thus modifying their identifiers. To avoid dealing
with tedious string manipulations, we recreate a syntax tree from our input
strings and store them as two separate ordered lists of instructions. The
line identifiers of each instruction are associated to the instruction through
an internal field. An additional validation pass is used to guarantee the
well-ordering of the identifiers. The instructions themselves are represented
as a base class which is extended for each instruction type. Figure 5.3 shows
the implementation of the Instruction base class. As mentioned, each
instruction type is its own subclass of the Instruction class, where they are
extended to contain the specific information about that class, e.g. the constd

instruction requires an additional field for its constant value, which is a non
Instruction-typed operand.

The final result basically functions as a btor2 compiler that allows us to
parse, traverse, and perform basic manipulations on any btor2 design [33].
Using this representation, we can easily merge two designs together using
the merge function shown in Figure 5.4.

The resulting miter file is the serialization of the above merged files. The
created compiler also support passes built as functions that take a list of
Instructions as a parameter. These can then be run arbitrarily in the main
function, or through command line arguments, to perform basic validation
on the btor2 design before outputting it. For example, this is used to
guarantee that the lids in the miter circuit are well-ordered. The output of
this verification work is an open-source tool called btor2-opt2.

1https://github.com/ucb-bar/riscv-mini
2https://github.com/Dobios/btor2-opt
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class Instruction:

def __init__(self, lid: int, inst: str,\

operands: list[Instruction] = []):

self.lid = lid

self.inst = inst

self.operands = operands

def move_up(self, amount: int):

self.lid += amount

def move_down(self, amount: int):

self.lid -= amount

def move(self, lid: int):

self.lid = lid

def eq(self, inst: Instruction) -> bool:

return self.operands == inst.operands and\

self.inst == inst.inst

def isin(self, p: list[Instruction]) -> bool:

for inst in p:

if self.eq(inst):

return True

return False

def serialize(self) -> str:

return str(self.lid) + " " + self.inst + " " +\

[str(op.lid) + " " for op in self.operands]

Figure 5.3: Implementation of the Instruction base class in Python. This simply allows for a
unified interface to manipulate and serialize instructions in such a way that it allows for minimal
overhead when merging two circuits.
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def create_lec_assertion(

out1: Instruction, out2: Instruction, base_lid: int

) -> list[Instruction]:

op1 = out1.operands[0]

op2 = out2.operands[0]

sort = Sort(base_lid, 1)

neq = Neq(base_lid + 1, [sort, op1, op2])

bad = Bad(base_lid + 2, neq)

return [sort, neq, bad]

def merge(p1: list[Instruction], p2: list[Instruction])\

-> list[Instruction]:

# Start by extracting the inputs

inputs = []

for op in p1:

if isinstance(op, Input):

inputs.append(op)

# Extract outputs (assume only 1 output per design at end of file)

out1 = p1[len(p1) - 1]

# Then reconstruct p2 without inputs and with an offset lid

new_p2 = []

cur_lid = len(p1) # don't count the output of p1

for op in p2:

if not isinstance(op, Input):

op.move(cur_lid)

cur_lid += 1

new_p2.append(op)

# Update input lids in operands

for oper in op.operands:

if isinstance(oper, Input):

if oper.isin(inputs):

oper = next(inp for inp in inputs if inp.eq(oper))

out2 = p2[len(new_p2) - 1]

lec = create_lec_assertion(out1, out2, new_p2[len(new_p2) - 1].lid)

# Remove outputs

p1.pop()

new_p2.pop()

return p1 + new_p2 + lec # merge everything

Figure 5.4: Merge function that creates a miter circuit from two parsed btor2 designs. The final
miter circuit has only one set of inputs and no outputs.
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5.2 Verifying the SVA Property Implementation

The implementation I introduced for the two SVA properties lowers temporal
logic to synthesizable logic by looking at the semantics of the expressions.
Given the nature of this approach, I need to design robust methods for
verifying the correctness of these lowerings. To do so, I take two approaches:

• Exhaustive Testing: Generate all possible non-overlapping implication
(NOI) statements within a given bound, then for each one run all
possible combinations of values for a and b over a given number of
cycles. Next, I compare the standard SVA lowering to my core lowering
running on the generated stimuli.

• Semantic Equivalence Checking: Express the comparison as an equiv-
alence problem and use a formal tool to check it.

Each approach allows us to verify different correctness properties of my
implementation, which are detailed in the following paragraphs.

5.2.1 Cycle-bound Exhaustive Differential Testing

As with any automated testing task, there are two problems that need to be
solved, the test-case generation problem and the oracle problem. In my case,
I start by proposing the following solutions:

• Test-case generation problem: Unlike with my btor2 pass, the space
of supported SVA properties is very small, so I can take a cycle-bound
exhaustive expression generation approach where I create every possi-
ble expression of NOI within a given number of simulated cycles, i.e.
the length of the simulation, and then generate every possible input
vector for the antecedent and the consequent within that number of
cycles.

• Oracle problem: Use a differential testing approach, where I com-
pare my solution to a well-respected commercial SVA implementation,
Synopsis VCS [61].

Figure 5.5 illustrates the structure of our exhaustive tester. My system
takes two inputs: a maximum delay length N, and a number of cycles I an
simulating for. I start by generating the NOI properties, such that they cover
all possible delays up until N. Then, for each generated statement, I generate
all possible binary input vectors for the antecedent and consequent values.
These vectors store the values used for the antecedent, the consequent, and
the reset at each cycle in the simulation. Finally, for each generated triplet I
generate a test-bench that stimulates the properties using the given values
at each cycle and use said test-bench to simulate the property lowered to
SystemVerilog under the two compilation pipelines.
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input N, Cycles
Exhaustive Tester

i :0..N => (a ##i true |-> b)

Generate Property

Generate Test-Bench

module tb; ...

i :0..2^Cycles => Bitvector(i)

Generate Input Vectors

a b

dut.scala CIRCT

dutltl.sv

Standard lowering

dutcore.sv

My lowering

VCS VCS

tb.sv

!= ?

Bug

Figure 5.5: Overview of the exhaustive test infrastructure used to stress-test the
lower-ltl-to-core pass. The testing tool takes two inputs, N, which is the longest delay
I want to generate, and Cycles, which is the number of cycles I want to exhaustively simulate our
designs for. The two designs are compared running with the generated test-bench on Synopsys
VCS, which is a commercial Verilog simulator that supports certain SVA properties, including
NOI.

Generating Properties As mentioned above, I generate every possible NOI
property up to a given delay bound. The generated properties are then
wrapped in a dummy module which takes the antecedent and consequent
as inputs. Figure 5.6 illustrates the design generated by the first part of

class NOI extends Module {

val a, b, t = IO(Input(Bool()))

AssertProperty(a.delay(i) ### t |-> b)

}

Figure 5.6: Code generated by our exhaustive tester. In practice i would be replaced by a
concrete value and the input t is always given the value 1, which is used for syntactical reasons.

the exhaustive tester. The design is then lowered using both the standard
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// Generated by CIRCT unknown git version

module NOI(input clock, reset, a, b);

reg hbr = 1'h0;
reg delay_ = 1'h0;
reg antecedent_0 = 1'h0;
always_ff @(posedge clock)

hbr <= reset | hbr;

always_ff @(posedge clock) begin

if (reset) begin

delay_ <= 1'h0;
antecedent_0 <= 1'h0;

end

else begin

delay_ <= delay_ | delay_ - 1'h1;
antecedent_0 <= a;

end

end // always_ff @(posedge)

always @(posedge clock)

assert(~(hbr & ~reset) | ~delay_ | ~antecedent_0 | b | reset);

endmodule

Figure 5.7: Lowering of the generated design using my custom SVA-free pass pipeline.

CIRCT compilation pipeline, and my custom SVA-free pipeline. The output
of those are an SV file containing the design with an SVA property used
as the assertion and a second SV file containing the same design with my
synthesized version of the property being checked under a standard assertion.
In order to verify that both designs are equivalent, I need a simulator that
supports SVA properties. Unfortunately, only a handful of Verilog simulators
support these constructs for simulation, which is why I resort to using
the commercial simulator Synopsis VCS. Figures 5.7 and 5.8 show the
lowered designs that will be run through VCS alongside a test bench during
exhaustive testing. Both of these are generated by CIRCT using my custom
pipeline, presented in Figure 5.7, as well as the standard CIRCT SV pipeline,
presented in Figure 5.8.

Generating Test Benches In order to have some context to compare the
properties in, I must stimulate the designs using the same test bench. Given
the limited scope of our inputs, i.e. 1-bit input vectors, it is reasonable to
generate every possible sequence of inputs within a certain number of cycles.
Given the total number of cycles, I generate 3 input vectors per test bench:
one for the antecedent, one for the consequent, and one for the reset. These
vectors are then used to create a standard SV test bench file that stimulates
the design with each value of each vector over a number of cycles equal to
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// Generated by CIRCT unknown git version

module NOI(input clock, reset, a, b);

reg hasBeenResetReg;

initial

hasBeenResetReg = 1'bx;
always @(posedge clock) begin

if (reset)

hasBeenResetReg <= 1'h1;
end // always @(posedge)

assert property (@(posedge clock)

disable iff (~(hasBeenResetReg === 1'h1 & reset === 1'h0))
a |=> b

);

endmodule

Figure 5.8: Lowering of the generated design using the standard CIRCT pipeline. Here, the
design contains an SVA property, which is not supported in most open-source simulators.

the length of those vectors. Figure 5.9 shows the structure of the test benches
that are generated by my exhaustive tester. The idea is to connect the values
from the generated input vectors into an instance of the design. Given that
designs already have an assertion in them, the goal is to check the outputs
from VCS running these test benches on the two designs and ensure that
they are identical in both cases.

Revealed Bugs This exhaustive test campaign was run over 20 cycles, taking
about a day to execute given the slow startup time of VCS. This simple test
campaign was already able to reveal two bugs, one in my implementation,
and one in the design of the lowering itself (both of which have since been
resolved). The implementation bug was simply a typo, but one difficult to
spot as it modified only a single character in the output MLIR. Instead of
delaying the antecedent, I was accidentally delaying the true signal at the
end of the concatenation. This lead to the NOI signal behaving the same
regardless of the number of cycles I would delay it by.

The second bug that this test campaign revealed was in my reasoning about
the reset signals used for my generated registers. Originally, I interpreted the
SVA standard [6] as saying that the property was never reset, so the sequence
is considered available once the antecedent’s delay has been reached in the
simulation. Therefore, I could reset my registers on the module’s reset so
that my delay counter started when the simulation started. This, however,
was wrong — my implementation would yield an incorrect result when the
design is reset in the middle of the simulation. This led me to understanding
that the correct reset signal should rather be the disable condition given to
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module tb;

reg clock; reg reset; reg a; reg b;

NOI dut (.clock(clock), .reset(reset), .a(a), .b(b));

always #5 clock = ~clock; // Generate Clock

initial begin

reset <= 1; // Reset the design

{clock, a, b} <= 0;

repeat(2) @(posedge clock);

reset <= 0; // End reset

// Bitvector execution

a <= a_0; b <= b_0; reset <= reset_0;

@(posedge clock);

a <= a_1; b <= b_1; reset <= reset_1;

@(posedge clock);

//...

a <= a_n; b <= b_n; reset <= reset_n;

repeat(2) @(posedge clock);

#20 $finish;

end

endmodule

Figure 5.9: Test bench generated to stimulate our designs using the input vectors generated by
my exhaustive tester. The antecedent and consequent are used to set the values in the assertion
and the reset is used to check that our assertions are correctly disabled.

the property, which was confirmed by rerunning the test campaign. The code
for this part of the verification work is fully open-source3.

5.2.2 Semantic Equivalence Checking

Additionally, a form of semantic equivalence checking was explored to
verify the lowerings. While the previous method focused more on the test
case generation, here I wanted to see if I could solve the oracle problem
differently to reveal a different set of bugs. The idea was to create a type
of miter circuit, similar to what is described in Section 5.1, but this time by
checking the semantic equivalence of the assertions rather than simply the
circuits themselves. To do this, both circuits generated in the first part were
merged into a single circuit, where the assertion was rewritten to check the
equivalence between the two conditions.

In order to check for equivalence between two assertions, we want to rewrite
them such that one is true if and only if the other is, as is illustrated in
Figure 5.10.

3https://github.com/Dobios/SVExhaustiveTester
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assert cond1;

assert cond2

// becomes

assert (cond1 implies cond2) and (cond2 implies cond1);

Figure 5.10: Example of an equivalence checking assertion.

There are several ways to express implications in SVA [6], all of which allow
for differ types to be used on each side of the implication. Given that we need
to be able to express a property, such as NOI, on each side of our implication,
we can not use a simple OI (|->) as we did previously as this only accepts
sequences in the antecedent, we instead need to use SVA’s implies operator,
which holds if the antecedent evaluates to false or the consequent evaluates
to true. The difference between these two operators is in the timing of when
the consequent is evaluated. For the overlapping-implication operator, the
consequent starts being evaluated on the last cycle in which the antecedent
sequence holds, while for the implies operator, both the antecedent and
consequent are evaluated concurrently. This allows for properties to be used
in the antecedent, as they don’t require a strict end cycle. Luckily, SVA offers
a syntax that expresses our if and only if condition in the form of iff, which
encodes (cond1 implies cond2) and (cond2 implies cond1).

For this expression to be valid both sides must be properties and thus
my lowering needs to be wrapped in a assert property statement that is
properly disabled. This is yet another modification that may cause slight
semantic changes to my lowering. Figure 5.11 shows the result of this fusion
between our two generated circuits for a basic NOI with a delay of 1 cycle.
Once this circuit is generated, I can simulate it with the exhaustive test
benches presented earlier and check if VCS signals a failure or not. This
simplifies the oracle part of the exhaustive tester and removes any potential
error that could come from incorrectly parsing VCS’s output. Figure 5.12
shows the structure of my test infrastructure using the semantic equivalence
check approach for the oracle. I now need only a single instance of VCS to
check the correctness of my lowering, making it significantly faster. There is
also no need to parse the output of the simulator, as a crash is sufficient to
detect whether or not the two assertions are equivalent.
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// Generated by CIRCT unknown git version

module NOI(input clock, reset, a, b);

// Lowered SVA-free circuit

reg hbr = 1'h0;
reg delay_ = 1'h0;
reg antecedent_0 = 1'h0;
always_ff @(posedge clock)

hbr <= reset | hbr;

always_ff @(posedge clock) begin

if (reset) begin

delay_ <= 1'h0;
antecedent_0 <= 1'h0;

end

else begin

delay_ <= delay_ | delay_ - 1'h1;
antecedent_0 <= a;

end

end // always_ff @(posedge)

property core;

(@(posedge clock)

disable iff(hbr & ~reset)

(~delay_ | ~antecedent_0 | b | reset));

endproperty;

// SVA property circuit

reg hasBeenResetReg;

initial

hasBeenResetReg = 1'bx;
always @(posedge clock) begin

if (reset)

hasBeenResetReg <= 1'h1;
end // always @(posedge)

property ltl;

(@(posedge clock)

disable iff (~(hasBeenResetReg === 1'h1 & reset === 1'h0))
a |=> b);

endproperty

// Logical equivalence check

assert property (@(posedge clock) core iff ltl);

endmodule

Figure 5.11: Miter circuit used to check the equivalence between our lowered assertion and the
original SVA property assertion.
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input N, Cycles
LEC Exhaustive Tester

i :0..N => (a ##i true |-> b)

Generate Property

Generate Test-Bench

module tb; ...

i :0..2^Cycles => Bitvector(i)

Generate Input Vectors

a b

dut.scala CIRCT

dutltl.sv

Standard lowering

dutcore.sv

My lowering

VCS

tb.sv

Merge

Bug

crash?

dutmiter.sv

Figure 5.12: Overview of the exhaustive testing infrastructure using a semantic equivalence check
for the oracle. The main difference compared to the previous figure is that the two generated
designs, dutltl.sv and dutcore.sv, are merged into a single circuit called dutmiter.sv, which
is then checked on a single instance of VCS. The benefit of this is that rather than having to
intercept and parse the complex output of the simulator, I can simply look for a crash and report
a bug if that happens.
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Chapter 6

Related Work

The way SystemVerilog’s concurrent assertions are supported varies drasti-
cally depending on the implementation of the language, and few solutions
currently support the full specification. In this thesis, I present a solution to
this that functions well for CIRCT and the format that is targeted, btor2, but
there exists a handful of other solutions to this problem that solve it in a way
better suited for other environments. In this section I present several of those
solutions and express how they differ to the one proposed here.

6.1 ChiselTest

Previous versions of Chisel relied on a Scala-based compiler for its inter-
mediary language called FIRTTL [39]. this compiler is known as the Scala
FIRRTL Compiler (SFC). While FIRRTL is still used as an IR for Chisel, it now
goes through CIRCT rather than the SFC. ChiselTest [50] is a testing library
for Chisel which enables various verification functionalities directly in test
benches written as Scala unit tests [68]. ChiselTest also allows for designs to
be converted into a format that can be used for Bounded Model Checking
through custom compiler passes added to the SFC. This is done using the
verify function and is based off of a similar conversion method as the one
used in this thesis’s solution.

Figure 6.1 shows an example of how ChiselTest can be used to perform
Bounded Model Checking. One difference with the solution presented in this
thesis is how the model checking is performed. In ChiselTest, the Bounded
Model Checking is performed directly in the Scala testing framework by
querying the selected backend when necessary [28], while the solution in
CIRCT functions as more of a traditional compiler which takes any design
and converts it into a format which meant to be handed off to an external
solver. Both solutions support btor2-based solvers, however the ChiselTest
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class Add extends Module {

val in = IO(Input(UInt(8.W)))

val out = IO(Output(UInt(8.W)))

out := in + 1.U

assume(in > 12.U && in < 255.U)

assert(out > 13.U)

}

verify(new Add, Seq(BoundedCheck(1), DefaultBackend))

Figure 6.1: Example of a basic incrementing circuit implemented in Chisel. The verify function
is used to convert this design into a format specified by the selected back end. By default, the
back end will be Z3, so the design will be unrolled and converted into SMTLib using the number
of cycles defined by the BoundedCheck argument [28].

solution only works on designs implemented Chisel, while my solution
works with all of CIRCT’s front ends.

ChiselTest also directly supports limited SVA-like temporal expressions,
such as the past function, which delays the value of a given signal by a
cycle. Using past in an assertion automatically delays the evaluation of that
assertion [43]. This allows one to express things like a > past(a), which
states that a is monotonically increasing.

An extension of ChiselTest, named CHA [74], was proposed to support a
number of SVA properties and sequences. CHA does so by converting the
supported properties into an LTL formula that can then be handed off to
SPOT [29]. SPOT then converts this formula into a deterministic automaton,
which is then parsed and implemented as synthesizable hardware by CHA.
While this initally seems to be a good approach to solve this issue, the
implementation is not ideal. CHA can only provably support very basic
properties, those of a similar nature to the ones supported by my work,
and their implementation relies on string expressions in a custom assertion,
which is very error-prone and not ideal as a general language contribution.
Additionally, CHA depends on an external tool, SPOT, to support these
basic properties, while my solution is entirely implement in CIRCT. A similar
approach was taken to integrate SPOT into ChiselTest directly, but this project
never passed the prototype phase [45].

6.2 Yosys

Yosys [73, 72] is a popular open-source tool which implements a subset of
SVA properties and sequences specifically for Bounded Model Checking.
This tool can construct an AST of the described hardware then lower it to
a btor2 description that can be used for Bounded Model Checking. This
is currently the most complete solution for Bounded Model Checking, but
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it only supports SystemVerilog as a front end, and it relies on having a
commercial license for Verific [7] to be able to use many of its features. The
actual lowering of SVA properties to synthesizable hardware, however, is
completely open-source.

The way the Yosys lowers SVA properties and sequences is based on con-
structing automata that monitor the behavior of the temporal expressions.
This automaton construction is done on a case-by-case basis through a large
sequence of special-casing to determine exactly how to intersect different
automata. The solution does not exploit many techniques found in automata
theory literature to optimize the construction, but rather benefits from spe-
cific knowledge of the semantics they are trying to lower to obtain a decently
scalable solution.

The implementation of Yosys contains an internal representation of non-
deterministic automata, which is used to easily nest sequences and properties
by intersecting their respective automata. Yosys makes the generated au-
tomata deterministic several times throughout the construction process. This
allows it to perform necessary optimizations while constructing the final
automaton that is then implemented as synthesizable logic. A benefit of this
approach is that is allows for the construction of more complex properties
than my direct lowering, however this is only supported in Yosys for designs
written in SystemVerilog, while my lowerings are implemented at a higher
level in the compilation pipeline and support many different front ends.

6.3 BlueSpec Verilog

Prior work [55] has looked at how SVA properties and sequences can be
implemented in a rule-based environment such as BlueSpec Verilog (BSV).
BSV is an implementation of the BlueSpec [16] rule-based high-level synthesis
semantic model in SystemVerilog. The goal of that work is to enable the
expression of SVA semantics in BSV. This implementation is split into two
parts, the sequence implementation and the property implementation. The
idea behind both is based in the conversion of SVA expressions to FSMs. This
is done by interpreting the SVA expressions using the semantics outlined in
Appendix F of the SV specification [2], and then converting each primitive
into its own state machine following methods similar to those presented in
Subsection 2.2.2.

Once the FSMs are obtained from the SVA expressions, we must check them
to verify that their expression holds. This is done in two different ways in
order to handle both sequences and properties. Sequences are represented
by an interface containing two methods, advance(), which advances to the
next state in the FSM and returns whether or not the sequence matches for
this cycle, and ended(), which signals that the sequence has ended. Their

57



6. Related Work

implementation guarantees that FSMs return to their initial state after halting,
allowing for their immediate reuse. This structure allows for the description
of sequences containing elements such as the concatenation operator ##1,
enabling the description of sequences such as s1 ##1 s2 which holds if
s1.end() returns true, then s2.end() returns true.

The implementation of properties in BlueSpec Verilog is more complex. A
property expressed in the form of sequence |-> property is first converted
recursively into two automata, one for the sequence and one for the property.
A worst case analysis is then done on the delay of the antecedent sequence
to obtain the maximum possible cycle-duration, max n, for that sequence.
BSV then creates max n copies of the property automaton. This ensures that
the overarching property has enough versions of the consequent automaton
in the initial state to be able to check that the property matches on every
cycle that the sequence could match in. These generated automata are then
used directly to match the described property using the FSM interface we
described earlier.

Unlike other approaches, BSV encodes properties as FSMs, which are much
easier to compose into larger properties without knowing the entire expres-
sion beforehand. This is a very similar approach to how we generate the
logic for our NOI implementation, as the combination of our register-delay
pipeline and our delay counter can be interpreted as simply monitoring our
conditions through copies of an FSM.
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Chapter 7

Conclusion

In this work, I have presented two new compiler passes, which add a formal
back end for Bounded Model Checking as well as a lowering for certain
SVA properties to synthesizable logic to the CIRCT compiler. These two
passes were then verified using a custom automated test suite designed
specifically for each solution. In this conclusion, I summarize the results
and contributions of this thesis as well as propose some directions for future
work.

7.1 Results

The formal verification flow, which includes the SVA property and sequence
lowering, and the btor2 emission pass, was integrated directly into firtool

which is the compiler for Chisel in the CIRCT project. This integration was
done by adding a --btor2 flag that triggers the use of the SVA property
lowering pass followed by the btor2 emission pass to then yield a btor2

description of the original design using only a single flag.

The SVA property lowering can be used with any of CIRCT’s back ends.
This enables the use of SVA properties for any tool that can understand
basic Verilog. Table 7.1 shows a list of Verilog simulators and compilers and
their support for SVA properties. As we can see, very few tools actually
support SVA properties for simulation. Yosys supports btor2 emission with
decent SVA property in with its open-source parser, but simulation is only
supported using the commercial front end. With the contributions of this
thesis one can use SVA properties with entirely open-source simulators, e.g.
the popular Verilog simulator Verilator.

Finally, the performance of the proposed formal back end far outperforms
that of the Scala-based one. This is a result of the environment in which
the CIRCT compiler exists, i.e. MLIR and C++. While the effort it takes
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Tool SVA property support Open-Source?
Synopsys VCS [61] Yes No

Intel Questa [38] No No
Yosys (open-source parser) [72] Yes (not for simulation) Yes

Yosys (Verific [7] parser) [73] Yes No
Icarus Verilog [71] No Yes

Verilator [60] No Yes

Table 7.1: List of Verilog Simulators and compilers, whether or not they support SVA properties,
and whether they are open-source. As this table shows, very few simulators support the use
of SVA properties – and all those that do are commercial. Yosys allows for the emission of
btor2 with limited SVA property support using their open-source subset, but it does not support
open-source simulation. With the contributions from this work, all of these tools can now support
the SVA properties supported in my lowering pass.

to implement such a back end is far greater in MLIR than in Scala, the
performance gains are significant enough for this to be worthwhile.

7.2 Future Work

While this thesis introduces important contributions to the CIRCT compiler
and verification for high-level hardware languages in general, there is always
more one could do to improve this new verification ecosystem. The following
is a non-extensive list of ideas and potential directions to extend this work
in order to improve the capabilities of the CIRCT compiler, both in terms of
designs it can support for formal verification and in the temporal properties
the user can express.

Extending the Formal Back End The current btor2 emission pass supports
converting designs which do not rely on the use of memories in any way.
While this already covers a large number of designs, adding support for
memories would allow for descriptions of entire processors to be verified
using Bounded Model Checking.

Memories can be supported by converting them into a particular state element
that uses the array sort rather than the bitvector one. Reading and writing
these special states could be done through the use of specific expressions
which model that behavior, such as read and write. Doing so would allow
the formal back end to support the same design functionalities as the SFC
formal back end.

Add Support for Variable Delays in the LTL to Core Lowering The only
delays currently supported in my solutions are fixed delays, i.e. delaying
by an exact number of cycles. In practice, as the discussion highlighted in
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Figure 4.6 illustrates, the use of variable delays can be very important when
describing behaviors such as transactions that are expected to take a variable
number of cycles to propagate across a network-on-chip [58].

Variable delays are expressed in the form a ##[n:m] b which means that a
holds between n to m cycles before b holds. Implementing this would require
a similar approach to what I described in Paragraph 4.2.2, but with a wider
range of cycles that must be checked. The idea would be to create a pipeline
of m registers to track the longest possible delay that a could have. Then the
accept condition would check for a range of registers rather than an exact
amount. For example, while a ##n b could have the following final assertion
(following the implementation strategy from Figure 4.12):

assert (delay < n) || a_n && b || reset

Using a variable delay, of the type a ##[n:m] b could yield the following
final assertion:

assert (n <= delay && delay < m) || (a_n || ... || a_m) && b || reset

This would generate the same number of registers as an exact delay of the
upper bound of the variable delay.

Arbitrary Concatenation in the Antecedent of an Implication The next step
in extending the support for SVA properties proposed in this thesis would
be to allow for arbitrary sequences to be expressed in the antecedent of an
implication. The current solution only supports a very specific pattern for
implication, a ##n true |-> b. Using a combination of the two methods
presented above, one could create a more generalized lowering that supports
a generic version of non-overlapping implication. However, there is some
difficulty in checking these types of properties when they find themselves
in an always property, as this would require creating multiple copies of the
antecedent lowering to monitor every element of the general concatenation
on every cycle. A direct lowering would be possible, but using an automaton
to monitor the property instead could make it easier to check, e.g. using the
same method as BSV [55].

Extended SVA Property Support through Automata Transformations Re-
lying on direct lowerings of an SVA property to synthesizable hardware
drastically limits the scope of what one can support in a compiler. A solution
to this limitation would be generating automata which monitor the property.

In order to do so, SPOT [29] could be integrated into a compiler pass in order
to facilitate the automata generation and manipulation. This could be done
by converting the input SVA property into an LTL formula which could then
be given to SPOT through its C++ library. Note that this cannot be done
for all SVA properties. Properties that utilize indefinite sequences or infinite
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delays are difficult to encode as an LTL formula. This tool would then output
a deterministic automaton which monitors the LTL formula it was given in a
format called HOA [8]. In order to integrate this, we would need to parse the
HOA output and convert it into the fsm dialect in CICRT which could then be
lowered into the core dialects. Having this integration would greatly simplify
the task of supporting more complex SVA properties, as it would reduce
the problem of finding an equivalent implementation to that of finding an
equivalent LTL formula.

Better Testing of the Formal Back End As mentioned in Section 5.1,
the verification of the formal back end still has room for improvement. In
particular, once memories are added to the CIRCT formal back end, one
could explore larger designs using the formal equivalence checking tool I
constructed to see if the CIRCT formal back end is equivalent to the SFC
formal back end in a more realistic setting.

7.3 Conclusion

This work presents a new compilation flow in MLIR from high-level hard-
ware designs to a format suitable for Bounded Model Checking that enables
the use of SVA-like temporal properties in the specification. This was done
through: first, introducing a formal back end in the form of a btor2 emission
pass in the CIRCT compiler, second, designing and implementing a lowering
for the two most common SVA properties and sequences (which enabled
the use of these temporal semantics in both open-source simulators and the
initial formal back end), and finally, designing an automated test-suite to
verify the correctness of these new passes. For the formal back end I built
an equivalence checking tool which creates a miter circuit by merging the
output of the SFC’s formal back end with that of my own back end then
checks for disagreements in the outputs of both btor2 circuits using btormc.
For the SVA property and sequence lowering I created an exhaustive tester
which compares assertions expressed using SVA properties with our lowered
versions using VCS. With these two verified passes, one can now express a
complex temporal specification directly in any of CIRCT’s front ends and
verify those formally using Bounded Model Checking entirely in open-source.
This was previously only possible through the use of commercial tools using
SystemVerilog. The importance of this contribution is highlighted by the
interest my work has attracted from various agile hardware development
teams that use high-level languages such as Chisel to improve their design
efficiency — who were previously stuck using SystemVerilog for their verifi-
cation. With these contributions more engineers can start adopting high-level
languages and open-source tools for both design and verification.
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I have learned many things through this work. Firstly, this project has taught
me how modern high-performance MLIR-based compilers such as CIRCT
are structured, and I have also learned how to contribute to them. While
my initial contributions took months to be accepted into the compiler, my
final ones took just a few hours thanks to the knowledge about writing MLIR
passes I acquired through dozens of reviews on my code. Secondly, this
project exposed me to the field of implementing checkers for temporal logic,
and, more importantly, how difficult it is to design a general lowering from
an LTL formula to an equivalent automaton. Finally, this project allowed me
to explore various methods for verifying compiler passes and how one could
go about creating automated test suites for that.

This project also triggered a movement towards improving the support for
SVA-style temporal expressions in the CIRCT compiler. Since my initial
contributions, there have been numerous discussions and follow-up contri-
butions for various verification functionalities in the compiler which I have
been able to be a part of. Alongside a research group at the University of
Cambridge, I helped design a generalized automata dialect for MLIR, as well
as a lowering from the fsm dialect to the core dialects, thus enabling potential
future implementations of more complex temporal expressions. I have also
reviewed and contributed to extensions of the ltl dialect to support various
complex expressions that go far beyond what the current dialect supports.
All of these new contributions and discussions surrounding verification sup-
port in these projects show that the future is bright for high-level hardware
languages, and that hardware development has exited the commercially
focused, HDL-based, status-quo it has been in for so many years.
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