
Amelia Dobis

COS 597E Final Project
Modularizing Formal Verification in High-Level

Hardware Languages

COS 597E Advanced Topics in Computer Science:
Programming Languages (for distributed systems),

Distributed Systems

December 13th 2024

Modular Formal Verification Amelia Dobis

Contents

1 Introduction 2

2 Overview 2

3 Background 3
3.1 Formal Verification of Hardware . 3
3.2 CIRCT . 6

4 Hardware Contracts 7
4.1 Verification using Hardware Contracts . 7
4.2 Implementing hardware contracts in CIRCT . 9

5 Extending the Formal Backend 9

6 Initial Evaluation 9

7 Conclusions 10

Modular Formal Verification Amelia Dobis

1 Introduction

The ever-increasing demand for performance in modern systems has led to a rise in heterogeneous
architectures driven by domain specific accelerators. This need for the fast production of hardware
acceleration in various domains has highlighted the gap in efficiency between software and hardware
development tools. As a solution, there have been many attempts to modernize hardware description
languages [3], either by embedding them into software languages as eDSLs [2, 21, 25], by using
software to directly generate hardware descriptions through High-Level Synthesis (HLS) [6, 20, 22,
23], or by introducing new paradigms that are higher-level than traditional register transfer level
languages [14,19]. With each new solution comes a new tool-chain, language, and verification system,
leading to large, disconnected array of tools that are built from the ground-up for every language.
This lack of a shared knowledge-base has greatly reduced the efficiency and adoption of these new
design tools. As a solution to this, CIRCT [12] was proposed as a unifying compiler infrastructure
and core representation for hardware description languages. This allowed for all optimizations
and back-ends to be created exactly once for all possible hardware languages, and many existing
languages used widely in industry are now based on CIRCT [2,5, 7, 8, 17, 19,20,22,23,27].

While this effort greatly unified the design capabilities of hardware description languages, verifica-
tion remained primarily done using a disconnected array of mostly proprietary SystemVerilog [1]-
based tools, rather than tools built for the source languages. This means that verification is now
the main bottleneck in hardware development flows. Formal Verification is a popular method used
to verify digital designs, and while its complexity is much greater than dynamic simulation-based
methods [11,13,15], the correctness guarantees it can produce are often required before the expen-
sive manufacturing process can take place. Typically, formal verification is done using complicated
closed-source commercial tools such as Jasper Gold or Synopsis VC Formal, and open-source so-
lutions like Yosys [26] only support System-Verilog as a front-end. Additionally, the scalability
of these tools is limited, as abstractions such as modularity are not preserved during verification,
leading to a duplication of effort. We believe that we should take inspiration from efforts to unify
design capabilities and create a unified modular representation of verification built into the hard-
ware compilation directly. We do so by proposing a unified interface for formal verification as well
as a modular specification interface, inspired by Dijkstra’s guarded commands [9], called hardware
contracts as part of CIRCT’s core dialects. These new constructs, alongside our recent addition of
formal verification back-ends for CIRCT [10], enable scalable formal verification for all of CIRCT’s
front-ends for free.

This work introduces the concept of hardware contracts and formal test interfaces as parts of
CIRCT’s core dialects. These abstractions allow for modularity to be retained during verification,
thus speeding up the verification process. We present a formal verification back-end introduced to
CIRCT and describe how it was updated to support hardware contracts. An initial evaluation is
shown using a simple example implemented in Chisel, where a single module with two instances is
verified with and without our contracts, achieving a speedup of 1.57x on even a simple example.
More elaborate evaluations are left for future work due to time constraints.

2 Overview

To demonstrate our solution, we implement a skeleton of a modular design and specify it using
hardware contracts, shown in Figure 1. Here two new concepts are introduced. First a contract
region is added to the implementation of module A, this is where we will specify the preconditions

Modular Formal Verification Amelia Dobis

class A extends Module {
val in = IO(Input(UInt(32.W)))
val out = IO(Output(UInt(32.W)))
contract {

requires in >= 0.U
ensures out === in + 42.U

}
// ... Module body ...

}

// Formal test harness
class B extends Module with Formal {

val a1 = Instance(A)
val a2 = Instance(B)
a1.in := 0.U
a2.in := 1.U
assert(a1.out + a2.out === 85.U)

}

Figure 1: Modular formal test bench implemented in Chisel using our formal interface. Module
A uses a contract that contains pre-conditions that the module’s inputs are expected to follow
(requires) and post-conditions that the module’s outputs should guarantee (ensures). Module B
is a formal test bench that checks the correct interaction between two instances of module A.

that the module’s inputs are expected to follow, marked using the requires keyword, and the
postconditions that the module’s outputs are expected to guarantee, marked using the ensures
keyword. Second, a formal test harness is introduced, implemented as a Scala trait [24], which
is used to signify that the body of module B is simply used to define a test case that should
be verified formally using bounded model checking [4], which is the default verification method
when no attributes are explicitly given. This annotated design and test are then compiled using
CIRCT and first lowered to its core dialects, shown in Figure 2. We can observe the two new
constructs introduced to our core dialects: verif.contract, which encodes a Hoare triple wrapping
an arbitrary operation, or set of operations, and verif.formal, which encodes our formal test
bench. Our core dialects are a generic form that contain information that can be used for both
design and verification. Once we have decided that we want to target a verification back-end, we
can lower this generic form of the design into one that specifically encodes our separate bounded
model checking problems, which is shown in Figure 3. In this final version, we have reduced our
module to a verification problem that checks whether we can prove our contract conditions using
the module’s body. In our test harness in module B, all of the instances of module A have been
replaced with the body of the contract of A. This allows us to only verify module A once, and then
use the proven contract as an abstraction of the module itself, allowing us to greatly reduce the
effort when verifying instances of a module. Additionally, having formal test constructs, such as
symbolic values, contracts and test harnesses directly integrates into our compiler allow for them
to easily be accessed in front-end languages, greatly simplifying the process of formally verifying a
design. Finally, our bounded model checking back-end allows for CIRCT to directly emit btor2 [18],
a format supported by various open-source model checkers, as is shown in Figure 4

3 Background

3.1 Formal Verification of Hardware

This work focuses on integrated creating a unified scalable formal verification framework for high-
level hardware languages, by integrating the constructs into the same compiler used to handle the
design constructs. Most of the introduced constructs focus on the main formal verification method
used in hardware, which is bounded model checking (BMC) [4].

The goal of BMC is to create a first-order logic representation of the design under verification (DUV)

Modular Formal Verification Amelia Dobis

hw.module @A(in %clk: !seq.clock, in %reset: i1, in %in : i32, out out : i32) {
; ... module body defining %out ...
%out_ = verif.contract %out : i32 {

%c0_32 = hw.constant 0 : i32
%prec = comb.icmp bin ugte %in, %c0_32 : i1
verif.requires %prec : i1
%c42_32 = hw.constant 42 : i32
%in_42 = comb.add bin %in, %c42_32 : i32
%post = comb.icmp bin eq %in_42, %out : i1
verif.ensures %post : i1

}
hw.output %out_ : i32

}
verif.formal @B {bound = 500, method = BMC} {

%a1.in = verif.symbolic_value : i32
%a2.in = verif.symbolic_value : i32
%c0_32 = hw.constant 0 : i32
%c1_32 = hw.constant 1 : i32
%set_a1 = comb.icmp bin eq %c0_32, %a1.in : i1
%set_a2 = comb.icmp bin eq %c1_32, %a2.in : i1
verif.assume %set_a1 : i1
verif.assume %set_a2 : i1
%a1.out = hw.instance "a1" @A(in: %a1.in) -> (out: i32)
%a2.out = hw.instance "a2" @A(in: %a2.in) -> (out: i32)
%add_out = comb.add bin %a1.out, %a2.out : i32
%c85_32 = hw.constant 85 : i32
%cond = comb.icmp bin eq %add_out, %c85_32 : i1
verif.assert %cond

}

Figure 2: Result of compiling the input Chisel design into the CIRCT core dialects. Module A is
first compiled to a regular hw.module, where the contract is lowered to our new verif.contract
operation, which encodes an arbitrary hoare triple. Module B is marked in Chisel as a formal
test harness and is therefore directly lowered to a verif.formal operation , which is our unified
interface for formal verification, using default attributes such as "bound" or "method" which refer
to the bound of the bounded model check and the verification method.

and prove the unreachability of a bad state, which violates a given specification, using a sequence
of SMT queries. Specifically, a sequential design, i.e. a design that contains stateful elements that
evolve over various cycles, is converted into a state transition system. This encodes the design as a
series of states, which represent a set of possible values that each stateful element in the design can
have, alongside transitions, which encode the conditions under which a state can advance to another.
Figure 5 shows an example of a simple counter circuit encoded as a state transition system. Each
transition in a state transition system implicitly encodes a clock tick. In BMC, the bound refers to
the number of clock cycles that the state transition system being verified will encode, e.g. a bound
of 500 means that we will "unroll" our counter for 500 cycles and check the unreachability of a
specified illegal state within that scope. This is the main method used to formally verify hardware,
however, it does not allow for the encoding of modularity, an abstraction required to implement

Modular Formal Verification Amelia Dobis

verif.formal @A {bound = 500, method = BMC} {
%in = verif.symbolic_input : i32
; ... module body defining %out ...
%c0_32 = hw.constant 0 : i32
%prec = comb.icmp bin ugte %in, %c0_32 : i1
verif.assume %prec : i1
%c42_32 = hw.constant 42 : i32
%in_42 = comb.add bin %in, %c42_32 : i32
%post = comb.icmp bin eq %in_42, %out : i1
verif.assert %post : i1

}
verif.formal @B {bound = 500, method = BMC} {

%a1.in = hw.constant 0 : i32 ; reduced via constant prop.
%a2.in = hw.constant 1 : i32
; contract a1
%a1.out = symbolic_value : i32
%c0_32 = hw.constant 0 : i32
%prec_1 = comb.icmp bin ugte %in, %c0_32 : i1
verif.assert %prec_1 : i1
%c42_32 = hw.constant 42 : i32
%in_42 = comb.add bin %in, %c42_32 : i32
%post_1 = comb.icmp bin eq %in_42, %a1.out : i1
verif.assume %post_1 : i1
; contract a2
%a2.out = symbolic_value : i32
%c0_32 = hw.constant 0 : i32
%prec_2 = comb.icmp bin ugte %in, %c0_32 : i1
verif.assert %prec_2 : i1
%c42_32 = hw.constant 42 : i32
%in_42 = comb.add bin %in, %c42_32 : i32
%post_2 = comb.icmp bin eq %in_42, %a2.out : i1
verif.assume %post_2 : i1
; test
%add_out = comb.add bin %a1.out, %a2.out : i32
%c85_32 = hw.constant 85 : i32
%cond = comb.icmp bin eq %add_out, %c85_32 : i1
verif.assert %cond

}

Figure 3: Result of lowering the core dialect representation into a form that is suitable to be emitted
as a set of btor2 files. Here two formal tests were generated, one for the module, where we check that
the body can be used to verify the contract, and one for the formal test harness, where instances of
module A are replaced with the body of the contract.

large designs. This is because modules in a designs are inlined during the conversion to a state
transition system, meaning that we need to re-verify a module for every one of its instances.

Our proposed back-ends will focus on targeting bounded model checking, and our proposed contract

Modular Formal Verification Amelia Dobis

class A extends Module {
 val in = IO(Input(UInt(32.W))
 val out = IO(Output(UInt(32.W))
 contract {
 require in >= 0.U
 ensure out === in + 42.U
 }
 // Module body
}

class B extends Module {
 val a1 = Instance(A)
 val a2 = Instance(A)
 a1.in := 0.U
 a2.in := 1.U
 assert(a1.out + a2.out === 85.U)
}

 1 sort bitvector 32
 2 constd 1 0
 3 sort bitvector 1
 4 ugte 3 2 2
 5 not 3 4
 6 bad 5 ; precondition a
 7 input 1 a1.out
 8 constd 1 42
 9 add 1 2 8
 10 eq 3 7 9
 11 constraint 10 ; postcondition a
 12 constd 1 1
 13 ugte 3 12 2
 14 not 3 13
 15 bad 14 ; precondition a2
 16 input 1 a2.out
 17 add 1 12 8
 18 eq 3 16 17
 19 constraint 18 ; postcondition a2
 20 add 1 11 12
 21 constd 1 85
 22 eq 3 20 21
 23 not 22
 24 bad 23 ; assertion

B.btor2

contract a1

contract a2

Figure 4: High-Level overview of the start and end points of our new formal compilation pipeline.
This allows formal verification constructs such as symbolic values, formal test harnesses and con-
tracts to be treated as first class constructs in our hardware langauges.

en = 0
count = 0

en = 1
count = 0

en = 1
count = 1

en = 0
count = 2

en = 1
count = 2

en = 0
count = 1

...

Figure 5: Example of a counter, enabled by the en signal, encoded as a state transition system.

construct will allow us to verify each module exactly once.

3.2 CIRCT

Our solution extends the core dialects of CIRCT to introduce a core representation for verification
alongside the existing core representation for design.

CIRCT 1 is an MLIR [16]-based hardware compiler infrastructure organized as a set of dataflow
dialects, i.e. interoperable domain-specific Intermediate Representations (IRs), passes to transform
those dialects, and back-ends to emit optimized SystemVerilog. Figure 6 shows the structure of
CIRCT and the relationships between its various dialects. The core dialects are at the center of the
entire compilation pipeline and form a generalized representation of hardware that all front-ends
target when using CIRCT as their back-end.

1https://github.com/llvm/circt

Modular Formal Verification Amelia Dobis

CIRCT unifies hardware compilation into a single tool that supports various paradigms and is
the back-end used for several high-level hardware languages, such as Chisel [2], Kanagawa [19],
magma [21], and many more.

. sca la

Fron t Ends and Dia lec t s

Chisel HLS K a n a g a w a PyCDE Verilog

chirr t l , f i rr t l c f , a r i th , handshake , dc ibis m o o r e

.cpp .k .py .sv

.sv .tcl . json .b to r2

Core Dia lec ts

Des ign Verification

comb, hw, seq verif, ltl

Specia l ty Dia lec ts

debug, es i , f sm, l lhd, om, sv

Back Ends

Emiss ion Simula t ion Verification

Figure 6: Overview of the CIRCT dialects and the relations between them. In this work, we
introduce the core verification dialects, as well as the verification backend.

4 Hardware Contracts

The first contribution of this work is the hardware contract abstraction. The goal is to maintain
the modularity expressed throughout the design during verification.

Problem Current formal verification tools ignore modularity by inlining module bodies in place of
their instances during verification. This is done in order to preserve correctness, however it requires
re-verifying modules for each of their instances and leads to a modular design being converted into
one big, monolithic bounded model checking problem.

Overview of our solution To prevent this problem, we take inspiration from Dijkstra’s Guarded
Commands [9] and introduce hardware contracts as a construct that allows the user to create
arbitrary Hoare triples in a design by wrapping statements with pre-conditions and post-conditions.
These contracts can then be used to create and abstraction of a module, allowing for scalable
verification of large modular designs. This also allows us to separate our verification task into
multiple smaller problems that can be checked in parallel. Figure 7 shows an abstract overview of
our solution.

4.1 Verification using Hardware Contracts

In order to verify a design specified using hardware contracts, there are two types of verification
contexts that need to be considered: verifying a module and verifying instances of a module. Once
these have been verified, we know that our design satisfies its specification.

Modular Formal Verification Amelia Dobis

Model for Verification

Module A

Module B

instance of A

Modular Design

Formula for A

Formula for A

Formula for B

instance of A

instance of B

Module C Formula for C

Current Approach

Formula for A

Formula for A

Formula for B

Model for Verification

Module A

Module B

instance of A

Modular Design

Formula for A

Formula for B

instance of A

instance of B

Module C Formula for C

Our Solution

Contract A

Contract B

Contract A

Contract A
Contract B

Figure 7: Abstract overview of how hardware contracts are used to simplify verification in highly
modular designs.

Verifying a Module The goal when verifying a module is to check that its body satisfies its
contract, or more specifically:

Assuming the preconditions, does the body satisfy the postconditions?

To verify this we must replace our module with a formal test by:

• Generating a symbolic value to represent each input.

• Assuming all preconditions on these symbolic inputs.

• Replacing inputs with their symbolic counterparts in the body.

• Asserting all of the postconditions.

Module A in Figure 3 shows an example of a generated module formal test. If the generated
transition system is unsatisfiable, then we know that our module satisfies its contract.

Verifying an instance of a module The goal when verifying an instance is simply to check that
the inputs connected to the instance satisfy the instantiated module’s preconditions. This is checked
by asserting the preconditions on the signals driving the inputs. If this holds, then we know that
our postconditions hold, as we have already proven that in our module test. We can thus generate
symbolic values representing the outputs of our instantiated module and assume the postconditions
on them. This models the behavior of the module without require an expensive re-verification of
the entire module body. Given that our module test and our instance tests are two independent
verification tasks, we can safely verify them in parallel and consider the design to be verified if all
of the parallel tasks are successful. Module B of Figure 3 shows an example of this replacement for
both instances of module A.

Modular Formal Verification Amelia Dobis

4.2 Implementing hardware contracts in CIRCT

This solution is implemented by introducing five new operations to the verif dialect in CIRCT, as
well as a PrepareForFormal pass that performs the contract replacement.

• verif.formal @Sym {attr-dict} {<body>}: declares a formal test block that can contain
constructs specific to verification. Each formal test will generate its own btor2 file.

• %val = symbolic_value : <type>: declares a free variable that will be interpreted symbol-
ically during verification. This is used to encode inputs and results in contracts, and it can
only be used in a formal test.

• %<outputs> = verif.contract %s {<body}: defines a hardware contract around all of the
operations reachable by %s (in the dataflow graph).

• verif.requires %<precondition> : <type>: declares a precondtion.

• verif.ensures %<postcondition> : <type>: declares a postcondition.

5 Extending the Formal Backend

The second task in this work is to extend the btor2 backend introduced in a previous work [10] to
support hardware contracts.

The existing backend originally only supported synchronous single clock designs and handled mod-
ules by inlining their bodies in place of every instance. We extend this in various ways such that it
can emit a directory of btor2 files and support multi-clock designs. This is done by:

• Introducing an infinitesimal clock and encoding all clocks as registers updated conditionally
on every infinitesimal clock. This way we can reduce a multi-clock design to a single clock
without modifying its behavior.

• Running the btor2 emission pass in parallel on each verif.formal rather than on an mlir.module
as it currently does. This also requires creating a file for each instance of this pass, rather
than at the beginning of the compilation pipeline as was originally done.

• Adding support for the new symbolic value operations introduced in the previous section.

Once these modifications were made, CIRCT was able to produce modularized btor2 files that can
then all be verified in parallel to efficiently verify a large design. This is all integrated into the
test-discovery functionalities of the circt-test tool.

6 Initial Evaluation

We perform an initial evaluation of our proposed hardware contracts by running the example from
Figure 1 through CIRCT, where the implementation of A is a convoluted counter that is incremented
until 42 before yielded the result using a ready-valid interface. The output btor2 files are then
verified in parallel using btormc [18]. Table 1 shows the result. To guarantee the accuracy of the
results, parsing time for all files are evaluated using btormc’s verbose mode and then removed from
the final wall time measurement. This speedup is due to contracts enabling solver parallelism
and simplifying verification. We believe that the speedup will scale with the size of the design.
Evaluation on larger designs is left for future work as it first requires adapting an existing large

Modular Formal Verification Amelia Dobis

without contracts with contracts speedup
0.011s 0.007s 1.57x

Table 1: Wall-time average over 100 runs (in seconds) of verifying Figure 1 with the resulting
speedup obtained from using hardware contracts.

design to add contract annotations to each module, which did not fit under this project’s time
constraints.

7 Conclusions

In this work we introduced a unified representation for scalable formal verification as part of CIRCT’s
core dialects. We improved verification scalability by introducing hardware contracts as an abstrac-
tion that enables maintaining modularity during verification. This not only simplifies the overall
verification task, but it also enables parallelization across the verification of multiple modules. Addi-
tionally, by introducing these contracts, as well as a unified formal test interface, as part of CIRCT’s
core dialects, we allow all of CIRCT’s frontend languages to gain access to scalable formal verifi-
cation for free. In an initial evaluation we show that these abstractions allow for fully open-source
tools to gain significant verification speedups even on tiny designs. Our hope is that hardware
contracts will make formal verification more accessible and make open-source model checkers and
high-level hardware languages viable tools for solving large-scale verification tasks.

Modular Formal Verification Amelia Dobis

References

[1] Ieee standard for systemverilog–unified hardware design, specification, and verification lan-
guage. IEEE Std 1800-2023 (Revision of IEEE Std 1800-2017), pages 1–1354, 2024.

[2] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman, Rimas Avižienis,
John Wawrzynek, and Krste Asanović. Chisel: constructing hardware in a scala embedded
language. In Proceedings of the 49th Annual Design Automation Conference, DAC ’12, page
1216–1225, New York, NY, USA, 2012. Association for Computing Machinery.

[3] Rick Bahr, Clark Barrett, Nikhil Bhagdikar, Alex Carsello, Ross Daly, Caleb Donovick, David
Durst, Kayvon Fatahalian, Kathleen Feng, Pat Hanrahan, Teguh Hofstee, Mark Horowitz,
Dillon Huff, Fredrik Kjolstad, Taeyoung Kong, Qiaoyi Liu, Makai Mann, Jackson Melchert,
Ankita Nayak, Aina Niemetz, Gedeon Nyengele, Priyanka Raina, Stephen Richardson, Raj
Setaluri, Jeff Setter, Kavya Sreedhar, Maxwell Strange, James Thomas, Christopher Torng,
Leonard Truong, Nestan Tsiskaridze, and Keyi Zhang. Creating an agile hardware design flow.
In Proceedings of the 57th ACM/EDAC/IEEE Design Automation Conference, DAC ’20. IEEE
Press, 2020.

[4] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, Yunshan Zhu, et al.
Bounded Model Checking. Advances in computers, 58(11):117–148, 2003.

[5] chipsalliance. Flexible intermediate representation for rtl.

[6] Johannes de Fine Licht, Maciej Besta, Simon Meierhans, and Torsten Hoefler. Transformations
of high-level synthesis codes for high-performance computing. IEEE Trans. Parallel Distrib.
Syst., 32(5):1014–1029, May 2021.

[7] John Demme. Elastic Silicon Interconnects: Abstracting Communication in Accelerator Design.
2021.

[8] John Demme. The ESI System Construction Compiler in 2024. 2024.

[9] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of programs.
Commun. ACM, 18(8):453–457, August 1975.

[10] Amelia Dobis. Formal verification of hardware using mlir. Master thesis, ETH Zurich, Zurich,
2024.

[11] Amelia Dobis, Kevin Laeufer, Hans Jakob Damsgaard, Tjark Petersen, Kasper Juul Hesse Ras-
mussen, Enrico Tolotto, Simon Thye Andersen, Richard Lin, and Martin Schoeberl. Verifica-
tion of chisel hardware designs with chiselverify. Microprocessors and Microsystems, 96:104737,
2023.

[12] Schuyler Eldridge, Prithayan Barua, Aliaksei Chapyzhenka, Adam Izraelevitz, Jack Koenig,
Chris Lattner, Andrew Lenharth, George Leontiev, Fabian Schuiki, Ram Sunder, et al. Mlir
as hardware compiler infrastructure.

[13] Martin Erhart, Fabian Schuiki, Zachary Yedidia, Bea Healy, and To-
bias Grosser. Arcilator: Fast and cycle-accurate hardware simula-
tion in CIRCT. https://llvm.org/devmtg/2023-10/slides/techtalks/
Erhart-Arcilator-FastAndCycleAccurateHardwareSimulationInCIRCT.pdf.

[14] Google. Xls: Accelerated hw synthesis. https://github.com/google/xls.

https://llvm.org/devmtg/2023-10/slides/techtalks/Erhart-Arcilator-FastAndCycleAccurateHardwareSimulationInCIRCT.pdf
https://llvm.org/devmtg/2023-10/slides/techtalks/Erhart-Arcilator-FastAndCycleAccurateHardwareSimulationInCIRCT.pdf
https://github.com/google/xls

Modular Formal Verification Amelia Dobis

[15] Sagar Karandikar, Howard Mao, Donggyu Kim, David Biancolin, Alon Amid, Dayeol Lee,
Nathan Pemberton, Emmanuel Amaro, Colin Schmidt, Aditya Chopra, Qijing Huang, Kyle
Kovacs, Borivoje Nikolic, Randy Katz, Jonathan Bachrach, and Krste Asanović. Firesim:
Fpga-accelerated cycle-exact scale-out system simulation in the public cloud. In Proceedings of
the 45th Annual International Symposium on Computer Architecture, ISCA ’18, page 29–42.
IEEE Press, 2018.

[16] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques Pienaar,
River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zinenko. Mlir: scaling
compiler infrastructure for domain specific computation. In Proceedings of the 2021 IEEE/ACM
International Symposium on Code Generation and Optimization, CGO ’21, page 2–14. IEEE
Press, 2021.

[17] Kingshuk Majumder and Uday Bondhugula. Hir: An mlir-based intermediate representation for
hardware accelerator description. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 4, ASPLOS
’23, page 189–201, New York, NY, USA, 2024. Association for Computing Machinery.

[18] Aina Niemetz, Mathias Preiner, Claire Wolf, and Armin Biere. Btor2 , btormc and boolector
3.0. In International Conference on Computer Aided Verification, 2018.

[19] Blake Pelton, Adam Sapek, Ken Eguro, Daniel Lo, Alessandro Forin, Matt Humphrey, Jinwen
Xi, David Cox, Rajas Karandikar, Johannes de Fine Licht, Evgeny Babin, Adrian Caulfield,
and Doug Burger. Wavefront threading enables effective high-level synthesis. Proc. ACM
Program. Lang., 8(PLDI), June 2024.

[20] Morten Borup Petersen. A dynamically scheduled hls flow in mlir, jan 2022.

[21] Lenny Truong and Pat Hanrahan. A Golden Age of Hardware Description Languages: Ap-
plying Programming Language Techniques to Improve Design Productivity. In 3rd Summit on
Advances in Programming Languages (SNAPL 2019), 2019.

[22] Christian Ulmann. Multi-level rewriting for stream processing to rtl compilation. Master thesis,
ETH Zurich, Zurich, 2022.

[23] Mike Urbach and Morten B Petersen. HLS from PyTorch to System Verilog with MLIR and
CIRCT. 2022.

[24] Bill Venners, Lex Spoon, and Martin Odersky. Programming in Scala, 3rd Edition. Artima
Inc, 2016.

[25] whitequark. amaranth. https://github.com/amaranth-lang/amaranth, 2022.

[26] Claire Wolf. Yosys open synthesis suite. https://yosyshq.net/yosys/.

[27] Ayaka Yorihiro, Griffin Berlstein, Kevin Laeufer, and Adrian Sampson. A firrtl backend for the
calyx high-level accelerator compilation infrastructure. 2024.

https://github.com/amaranth-lang/amaranth
https://yosyshq.net/yosys/

	Introduction
	Overview
	Background
	Formal Verification of Hardware
	CIRCT

	Hardware Contracts
	Verification using Hardware Contracts
	Implementing hardware contracts in CIRCT

	Extending the Formal Backend
	Initial Evaluation
	Conclusions

