
Towards Functional Coverage-Driven Fuzzing
for Chisel Designs

Amelia Dobis, Tjark Petersen, Martin Schoeberl
Department of Applied Mathematics and Computer Science

Technical University of Denmark
Lyngby, Denmark

amelia.dobis@alumni.ethz.ch, s186083@student.dtu.dk, masca@dtu.dk

Abstract—Verification of digital systems must be done in
ever tighter time constraints due to the rise of domain-specific
hardware accelerators. To combat this, we can learn from agile
techniques, typical in software engineering, and use them for
hardware development. In this mindset, Chisel, a hardware
construction language embedded in Scala, was developed as a
tool to accelerate the implementation of digital designs. Following
this path, we developed a high-level verification library named
ChiselVerify, bringing functionalities such as functional coverage
to the Chisel ecosystem. Using this tool, we propose a functional
coverage-driven mutation-based fuzzer for Chisel designs. Initial
experiments are done on the Leros accumulator ALU.

Index Terms—digital design, verification, fuzzing, coverage

I. INTRODUCTION

In recent years, we have seen an increase in the demands
for high performance computing systems. This comes with an
increase in the need for domain-specific hardware accelerators.
Designing these is time-consuming and error prone, which
is why researchers have been focusing on increasing the
efficiency of hardware design and verification tools to fight
this added time constraint. This has lead to the introduction of
verifications methods, such as constrained random verification
and functional coverage [4], [9], into high level hardware
construction languages, like the Scala-embedded language
Chisel [2], [8] . These tools, inspired by the more hardware-
centric approach given in SystemVerilog and UVM [5], enable
basic verification where the user has to handle the writing
of all tests by hand. To improve the efficiency of these
tools, we propose a form of dynamic verification, based on
coverage-driven mutation-based fuzzing techniques found in
the software world. This enables fuzzing for digital designs
using functional coverage as a driving metric.

This paper describes a research project that aims to develop
a functional coverage-driven mutation-based fuzzing tool to
test digital circuits. Furthermore, we plan to build on this tool
to generate constrained random programs so that fuzzing can
be used to test processors.

This paper is organized in six sections: Section II presents
related work. Section III describes the open-source tools that
we use in our project. Section IV presents our open-source
fuzzing library, which is part of ChiselVerify. Section V
evaluates our approach with a small design example written
in Chisel. Section VII concludes.

II. RELATED WORK

At the time of writing, little published work was done in
the realm of fuzzing for digital circuits. One project, named
RFuzz [6] and lead by researchers at UC Berkeley, focuses on
“coverage-guided fuzz mutational testing”. This method relies
on FPGA-accelerated simulation and new solutions allowing
for quick and deterministic memory resetting, to efficiently
use fuzzing on digital circuits. The coverage metrics used in
this solution are automated and based on branch coverage.
RFuzz is currently no longer in development (last commit
is from July 2020), and differs from what we present in
this paper in two ways. First, RFuzz uses a simple coverage
metric that is independent of the device under test (DUT),
while we guide our fuzzing using functional coverage, which
inherently contains information about the DUT. Functional
coverage is obtained using tools from ChiselVerify [3], [9].
Another difference is in the randomized program generation,
while RFuzz generates random bit streams, our goal is to
focus as well on the generation of coherent random generated
programs to test a processor.

American fuzzy lop (AFL) [14] is a mutation-based fuzzer
for software developed by researchers at Google. AFL uses a
form of branch coverage, known as edge coverage, as a driving
metric. RFuzz, as well as our own solution, is based on AFL.
The key difference is that AFL is a fuzzer for software, while
the two other fuzzers are for digital circuits. This impacts the
way a test is defined, interpreted and mutated [6]. Trippel et
al. use AFL to apply software fuzzing to hardware [12]. As
hardware contains state, test input has to be applied for several
clock cycles to activate state transitions. They transform the
one-dimensional test input, generated by AFL, to a sequence
of inputs applied on sequential clock cycles.

As for random program generation, the open-source RISC-V
DV framework [1], built using python and SystemVerilog, is a
notable existing solution. However, an implementation in Scala
will have the advantage of keeping all internal communications
in the same language. We also plan on providing a general
infrastructure for RISC architectures, while ISA definitions
will be kept as libraries, allowing our implementation not to
be limited by a single ISA.

As far as we know, our solution, which is part of the
verification library ChiselVerify, is the only mutation-based



Choose T from
interesting tests

No

Yes
New 

Coverage?

Execute Test T'

loop

Yes Buggy 
behavior?Report Bug

Mutate T into T'

Add T' to
interesting tests

Fig. 1. Mutation-based fuzzing feedback loop. First start with a test, i.e. with
a set of inputs, then mutate the test, execute it and evaluate how it effected
the coverage. If the coverage changed, then the test is interesting else it is
not.

fuzzer for digital circuits that uses functional coverage to drive
the test generation.

III. OPEN-SOURCE TOOLS

Our work is based on the methods and heuristics used in
AFL, which we reimplement in Scala in order to use it along
with other Chisel verification libraries like ChiselTest [7] and
ChiselVerify.

A. Mutation-based Fuzzing

Mutation-based fuzzing is a form of blackbox fuzzing, i.e.,
fuzzing without knowledge about the program or device it is
testing.

Figure 1 shows that, in mutation-based fuzzing, we start by
defining well-formed inputs, a.k.a. seeds, and a coverage met-
ric. We then mutate the seeds based on coverage feedback from
a previous test in order to obtain new coverage results. The
fuzzing stops once a target coverage percentage is reached.

We can then define a fuzzer with 3 elements:
• Fuzz server, which interfaces with the program under

test and resets it after each test.
• Instrumentation pass, which is where the coverage-

related modifications are made to the program under test.
• Fuzz engine, which handles test mutation and coverage-

feedback analysis.

B. Chisel

Our project focuses on digital circuits designed in Chisel.
Chisel is a hardware construction language embedded in
Scala [2] that generates Verilog as a final output. Chisel
also generates code in an intermediate representation named
FIRRTL1(Flexible Intermediate Representation for RTL).
Chisel allows the user to describe digital circuits in a high-
level manner, using functional tools and libraries from Scala
in order to minimize the amount of code needed to describe a
circuit. Since Chisel is a pure hardware construction language,
all valid Chisel code maps to synthesizable hardware. Chisel
also enables the verification engineer to use the full power
of Scala and Java in a Chisel test-bench, thus making the
verification more efficient.

1https://github.com/freechipsproject/firrtl

C. ChiselTest

There a several ways to test a Chisel design, where the
most common is to write test-benches for the emitted Verilog
code. This may be done with standard Verilog test-benches or
writing more complex ones using SystemVerilog with UVM.

ChiselTest [7], a non-synthesizable testing framework for
Chisel, offers another solution by allowing one to directly test
the Chisel code in a usable and simple way. ChiselTest works
as a Scala library that allows the user to interface directly with
the simulator with operations like peek (view the value of a
wire), poke (write a value to a wire) and step (increment the
clock). In order to write concurrent test-benches, the library
also offers a fork method.

ChiselTest tries to enable best practices from software engi-
neering by having lightweight syntax, allowing one to easily
write small targeted unit tests. Our project uses ChiselTest
as a backend in order to access the simulator throughout the
fuzzing cycle.

D. ChiselVerify

The presented fuzzer is part of the ChiselVerify project [4],
[9], available at https://github.com/chiselverify.

ChiselVerify’s functional coverage tool is used as the driving
metric of our fuzzer. Functional coverage is a hardware-
oriented coverage metric that helps verify how thoroughly
certain features of a given specification have been tested. These
features are defined in what’s called a verification plan [11],
which is defined using a set of cover constructs. A cover
construct is associated to one or many DUT ports, and contains
bins defining a range or a condition to sample over. A hit
is considered when a value sampled for the port is either
contained in the bin’s range or validates its condition.

E. Simulators

Chisel designs can be simulated by simulating the generated
Verilog or FIRRTL code. Verilog can be used by any Verilog
simulator. Most of them, however, are proprietary and thus
need expensive licenses in order to be used. The main open-
source option is verilator [13], which has a high compila-
tion cost but has a good per-cycle efficiency.

The second option is to use a FIRRTL simulator, the main
one being Treadle.2 Treadle operates on FIRRTL and thus
allows one to avoid generating Verilog code, which can vastly
reduce the setup time for tests and efficiently run suites of
many short tests. ChiselTest and our solution both use Treadle
as a simulator.

IV. FUZZING WITH CHISEL

The main goal of this project is to enable the fuzzing of
digital circuits implemented in Chisel, while using functional
coverage as a driving metric. As a first attempt, we used
AFL’s mutation engine using the Java Native Interface (JNI).
In order to reduce compilation time, we chose to reimplement
a subset of AFL’s mutation techniques using Scala. We will
now present the fuzzer’s current structure.

2https://github.com/freechipsproject/treadle

https://github.com/freechipsproject/firrtl
https://github.com/chiselverify
https://github.com/freechipsproject/treadle


The fuzzer works in five main phases:
• Interpret user-defined input files as bit-streams and load

them into a queue.
• Select the next file from said queue.
• Mutate the file, using multiple passes of first deterministic

then non-deterministic mutation techniques.
• Run the test and retrieve coverage results.
• Compare the results to the previous ones to determine if

the new test was interesting or not. Add the test to the
corpus of interesting tests if needed and repeat.

Initial inputs are defined by the user and will be the base
seeds of the test corpus. This is done by defining a set of
binary seed files that each contain a sequence of inputs for
the DUT.

We define the input size as the sum of the bit lengths of all
DUT input signals.

1 class DUT extends Module {
2 val io = IO(new Bundle {
3 val inA = Input(UInt(32.W))
4 val inB = Input(UInt(32.W))
5 val inC = Input(UInt(64.W))
6 val out = Output(UInt(32.W))
7 })}

Listing 1. DUT with two 32 bit inputs, one 64 input, and a 32 bit output.

For example, Listing 2 has an input size of 32+32+64 = 128
bits. An input for this would thus be a 128 bit binary sequence,
where the first 32 bits would be inA, second 32 bits inB and
last 64 bits inC. The fuzzer considers a single continuous bit
string as a test and will parse it by considering each input
sized segment as a cycle of values. This means that, in order
to define timing in our tests, we can simply concatenate a
second 128 bit sequence to the first one. This second sequence
will be fed to the DUT a single cycle later, thus creating a 2
cycle long test. The total duration of a test is thus defined by
the input file’s bit-length divided by the input size of the DUT.

Our fuzzer implements a subset of AFL’s fuzzing engine,
which uses multiple passes of both deterministic and non-
deterministic mutation techniques. The engine first starts by
applying the following series of deterministic mutation tech-
niques:

• Walking bit or byte flips: Sequentially walk through
each bit string row, either bit by bit or byte by byte, and
flip either 1, 2 or 4 bits or bytes per pass.

• Simple arithmetics: Add or subtract values to the bit
string. This is usually done by doing multiple incremen-
tations or decrementations at different bytes throughout
the string.

• Known integers: Use preset interesting integer values
(like 0x7F or 0xFF) to replace bytes throughout the string.

After using the above deterministic mutation methods, AFL
moves on to non-deterministic mutations like stacked tweaks
or test case splicing, which are covered in detail in AFL’s
documentation [15]. Our implementation currently only im-
plements deterministic methods, but we plan on implementing
non-deterministic methods in the future.

Throughout the fuzzing cycle, data is accumulated in the
form of pairs containing both the test’s input bit string and
the values of the hits that they generated for each cover
construct defined in the verification plan [4]. These (Test,
hit values) pairs are then used to identify whether or not
an input bit string was interesting. An interesting input is
defined as any input that generated a set of hit values that
is not a subset of an existing interesting result. These results
also contain a total obtained functional coverage, which is
the average coverage over all defined cover constructs in the
verification plan. The coverage allows us to know when to
stop fuzzing and output a final result.

The interface for our fuzzer is defined as follows:

1 object Fuzzer {
2 def apply[T <: MultiIOModule](
3 dut: T,
4 funCov: CoverageReporter,
5 goldModel: List[BigInt] => List[BigInt],
6 target : Int = 100,
7 timeout : BigInt = BigInt(1000000))
8 (result: String,
9 bugResult: String,

10 seeds: String*) : Int
11 }

Listing 2. Interface for the ChiselVerify fuzzer. It takes as parameter a dut,
chiselverify.coverage.CoverageReporter, which is the verification
plan used to define the functional coverage that will drive the fuzzing, and a
golden model, which is used to find buggy results. It also takes in a target
coverage percentage between 0 and 100, which defaults to 100, and a timeout
which is set by default to 1’000’000. The second set of parameters are a
result output file name, where all of the interesting tests and their resulting
hit values will be written, a bug output file name, as well as a variable number
of file paths, which will be used as seeds for the mutation engine.

The fuzzer itself will run either until the target coverage or the
timeout is reached. A golden model is also used in order to
verify if an input string triggered a buggy behavior. If buggy
behavior is detected, meaning that an obtained result doesn’t
match the golden model’s result, then a buggy result is written
to the bugResult file. The value returned is the final coverage
percentage attained during the fuzzing.

V. INITIAL EXPERIMENTS

Although this is a work-in-progress report, we have started
with an evaluation.

For our evaluation, we used an ALU with an accumulator
from the Leros processor [10] as our device-under-test (DUT).
The example is simple, but has a combinational part and state
in a register, being a non-trivial circuit for testing.

We start by creating a verification plan using functional
coverage tools from ChiselVerify.

1 val cr = new CoverageReporter(dut)
2 cr.register(
3 cover("op", dut.input.op)(
4 bin("nop", 0 to 0),
5 //[...] Bins for each operation
6 bin("shr", 7 to 7)),
7 cover("din", dut.input.din)(
8 bin("0xF", 0 to 0xF),
9 //[...] Cover all ranges

10 bin("0xFFFF", 0xFFF to 0xFFFF)),



11 cover("accu", dut.output.accu)(
12 //[...] Same as din
13 cover("ena", dut.input.ena)(
14 bin("disabled", 0 to 0),
15 bin("enabled", 1 to 1)))

Listing 3. Simple verification plan for the Leros ALU. Since this is still a
work-in-progress, the verification plan is simple and only contains basic cover
points. The functional coverage code is also abridged since it is not our main
focus in this paper.

Listing 3 shows a verification plan that covers all possible
values for the ALU’s inputs. Once the verification plan is
defined, we create a binary input file, defining a seed for the
fuzzer. To do that, we write a series of simple operations for
the ALU to perform and encode them in a binary format stored
in seed files.

1 //32 + 25, done by loading 32 and adding 25
2 //op = 6; din = 0x20;
3 //op = 1; din = 0x19;
4 //op = 0; din = 0;

6 //Binary input stream:
7 110 00100000 001 00011001 000 00000000

Listing 4. Basic ALU operations; dut.io.op is 3 bits wide and din is 8 bits
wide. For clarity, a whitespace separates each input.

Listing 4 shows a basic binary seed saved in a file named
seed.bin. All that is left is to run the fuzzer on our design
with the given seed.

1 Fuzzer(dut, cr)("output.txt", "seed.bin")

Listing 5. Call to the fuzzer using the setup previously described.

Running the fuzzer, with listing 4 as an input, results in
a timeout. Indeed, with a single seed, the initial corpus will
always be a continuous mutation of the same test and it is thus
less likely to generate interesting results. Adding more input
seeds covering all possible operations increases results in a
higher maximum coverage using the same timeout. Further
evaluation is planned, using the same fuzzer driven by edge
coverage in order to compare the bugs detected using each
coverage metric. We also expect the use of functional coverage
to lead to less iterations required to obtain a satisfactory cov-
erage percentage, due to the additional information inherently
contained in this metric.

VI. FUTURE WORK

Since this project is still a work-in-progress, the evaluation
has still only been done with simple designs, such as an
ALU. The discussed fuzzing techniques can also be applied
to processors where, instead of input sequences, a coherent
program is generated and mutated to maximize the functional
coverage of the circuit. This requires a constrained random
program generator which can be interfaced by a fuzzer and
used as an alternative mutation engine. This will result in
more efficient processor fuzzing, since it will only generate
legal instructions.

As a part of the ChiselVerify project, we have started to
develop a constrained random assembly program generator
with the goal of combining it with the developed fuzzer to
ameliorate processor mutation-based fuzzing in Chisel.

VII. CONCLUSION

This work-in-progress paper is a sketch of how to support
testing and verification of digital designs described in Chisel
with fuzzing. Inspired by ideas introduced by the software
world, we presented a version of mutation-based fuzzing
driven by a hardware-oriented coverage metric. This allows a
fuzzer to generate tests that are more interesting for digital
designs and give the user more control over its behavior.
Our plans are to continue our work by enabling constrained
generation of programs in order to test processor designs.

Source Access

The source for this library is available on GitHub:
https://github.com/chiselverify/chiselverify. We plan also to
regularly publish it on Maven.3

REFERENCES

[1] Sallar Ahmadi-Pour, Vladimir Herdt, and Rolf Drechsler. Constrained
random verification for risc-v: Overview, evaluation and discussion. In
MBMV 2021; 24th Workshop, 2021.

[2] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew
Waterman, Rimas Avizienis, John Wawrzynek, and Krste Asanovic.
Chisel: constructing hardware in a scala embedded language. In The
49th Annual Design Automation Conference (DAC 2012), pages 1216–
1225, San Francisco, CA, USA, June 2012. ACM.

[3] Andrew Dobis, Tjark Petersen, Hans Jakob Damsgaard, Kasper
Juul Hesse Rasmussen, Enrico Tolotto, Simon Thye Andersen, Richard
Lin, and Martin Schoeberl. Chiselverify: An open-source hardware
verification library for chisel and scala. In 2021 IEEE Nordic Cir-
cuits and Systems Conference (NORCAS): NORCHIP and International
Symposium of System-on-Chip (SoC), 2021.

[4] Andrew Dobis, Tjark Petersen, Kasper Juul Hesse Rasmussen, Enrico
Tolotto, Hans Jakob Damsgaard, Simon Thye Andersen, Richard Lin,
and Martin Schoeberl. Open-source verification with chisel and scala.
https://arxiv.org/abs/2102.13460, 2021.

[5] IEEE. 1800.2-2017 - IEEE Standard for Universal Verification Method-
ology Language Reference Manual.

[6] Kevin Laeufer, Jack Koenig, Donggyu Kim, Jonathan Bachrach, and
Koushik Sen. Rfuzz: Coverage-directed fuzz testing of rtl on fpgas. In
2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1–8, 2018.

[7] Richard Lin. ChiselTest. https://github.com/ucb-bar/chisel-testers2.
[8] Martin Schoeberl. Digital Design with Chisel. Kindle Direct Publishing,

2019. available at https://github.com/schoeberl/chisel-book.
[9] Martin Schoeberl, Simon Thye Andersen, Kasper Juul Hesse Rasmussen,

and Richard Lin. Towards an open-source verification method with
chisel and scala. In Proceedings of the Third Workshop on Open-Source
EDA Technology (WOSET), 2020.

[10] Martin Schoeberl and Morten Borup Petersen. Leros: The return of
the accumulator machine. In Martin Schoeberl, Thilo Pionteck, Sascha
Uhrig, Jürgen Brehm, and Christian Hochberger, editors, Architecture
of Computing Systems - ARCS 2019 - 32nd International Conference,
Proceedings, pages 115–127. Springer, May 2019.

[11] Chris Spear. SystemVerilog for verification: a guide to learning the
testbench language features. Springer Science & Business Media, 2008.

[12] Timothy Trippel, Kang G. Shin, Alex Chernyakhovsky, Garret Kelly,
Dominic Rizzo, and Matthew Hicks. Fuzzing hardware like software.
CoRR, abs/2102.02308, 2021.

[13] Veripool. Verilator. https://www.veripool.org/wiki/verilator.
[14] Michal Zalewski. American fuzzy lop. https://github.com/google/AFL.
[15] Michal Zalewski. Binary fuzzing strategies: what

works, what doesn’t. https://lcamtuf.blogspot.com/2014/08/
binary-fuzzing-strategies-what-works.html.

3https://mvnrepository.com/artifact/io.github.chiselverify/chiselverify

https://github.com/chiselverify/chiselverify
https://arxiv.org/abs/2102.13460
https://github.com/schoeberl/chisel-book
https://www.veripool.org/wiki/verilator
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html
https://lcamtuf.blogspot.com/2014/08/binary-fuzzing-strategies-what-works.html

